Horizontal transfer (HT) of genetic material is central to the architecture and evolution of prokaryote genomes. Within eukaryotes, the majority of HTs reported so far are transfers of transposable elements (TEs). These reports essentially come from studies focusing on specific lineages or types of TEs. Because of the lack of large-scale survey, the amount and impact of HT of TEs (HTT) in eukaryote evolution, as well as the trends and factors shaping these transfers, are poorly known. Here, we report a comprehensive analysis of HTT in 195 insect genomes, representing 123 genera and 13 of the 28 insect orders. We found that these insects were involved in at least 2,248 HTT events that essentially occurred during the last 10 My. We show that DNA transposons transfer horizontally more often than retrotransposons, and unveil phylogenetic relatedness and geographical proximity as major factors facilitating HTT in insects. Even though our study is restricted to a small fraction of insect biodiversity and to a recent evolutionary timeframe, the TEs we found to be horizontally transferred generated up to 24% (2.08% on average) of all nucleotides of insect genomes. Together, our results establish HTT as a major force shaping insect genome evolution.horizontal transfer | transposable elements | insects | genome evolution | biogeography H orizontal transfer (HT) is the transmission of genetic material between organisms through a mechanism other than reproduction. In prokaryotes, HT is pervasive, its mechanisms are well understood, and it is now viewed as one of the main forces shaping genome architecture and evolution (1, 2). In contrast, the study of HT in eukaryotes is less documented, but has been increasingly investigated. The majority of genes horizontally acquired by eukaryotes come from bacteria, but the extent to which these transfers have contributed to eukaryote evolution is still unclear (3, 4). Gene transfers from eukaryote to eukaryote appear to be largely limited to filamentous organisms, such as oomycetes and fungi (5, 6).In animals and plants, very few cases of such horizontal gene transfers (HGTs) have been reported so far (7,8). In fact, most of the genetic material that is horizontally transferred in animals and plants consists of transposable elements (TEs) (9-11), which are pieces of DNA able to move from a chromosomal locus to another (12). The greater ability of TEs to move between organisms certainly relates to their intrinsic ability to transpose within genomes, which genes cannot do. HT of TEs (HTT) may allow these elements to enter naive genomes, which they invade by making copies of themselves, and then escape before they become fully silenced by anti-TE defenses (13). A growing number of studies have identified such HTT (11,[14][15][16]. However, a common drawback of these studies has been the inclusion of a limited set of TEs (11) or organisms (16), which hampers our understanding of the breadth of HTT, its contribution to genome evolution, and of the factors and barriers shaping these transfe...
Our knowledge of the diversity and frequency of genomic structural variation segregating in populations of large double-stranded (ds) DNA viruses is limited. Here, we sequenced the genome of a baculovirus (Autographa californica multiple nucleopolyhedrovirus [AcMNPV]) purified from beet armyworm (Spodoptera exigua) larvae at depths >195,000× using both short- (Illumina) and long-read (PacBio) technologies. Using a pipeline relying on hierarchical clustering of structural variants (SVs) detected in individual short- and long-reads by six variant callers, we identified a total of 1,141 SVs in AcMNPV, including 464 deletions, 443 inversions, 160 duplications, and 74 insertions. These variants are considered robust and unlikely to result from technical artifacts because they were independently detected in at least three long reads as well as at least three short reads. SVs are distributed along the entire AcMNPV genome and may involve large genomic regions (30,496 bp on average). We show that no less than 39.9 per cent of genomes carry at least one SV in AcMNPV populations, that the vast majority of SVs (75%) segregate at very low frequency (<0.01%) and that very few SVs persist after ten replication cycles, consistent with a negative impact of most SVs on AcMNPV fitness. Using short-read sequencing datasets, we then show that populations of two iridoviruses and one herpesvirus are also full of SVs, as they contain between 426 and 1,102 SVs carried by 52.4–80.1 per cent of genomes. Finally, AcMNPV long reads allowed us to identify 1,757 transposable elements (TEs) insertions, 895 of which are truncated and occur at one extremity of the reads. This further supports the role of baculoviruses as possible vectors of horizontal transfer of TEs. Altogether, we found that SVs, which evolve mostly under rapid dynamics of gain and loss in viral populations, represent an important feature in the biology of large dsDNA viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.