References 1. Courchesne E, Yeung-Courchesne R, Press GA, et al. Hypoplasia of cerebellar vermal lobules VI md VII in autism. N Engl J Med 1988;318:1349-1354 2. Mirakanii JW, Courchesne E, Press GA. et al. Keduced cerehellar hemisphere size and its relationship to neural hypoplasia in autism. Arch Neurol 1989;46:689-694 3 . Courchesne E. Neuroanatomic imaging in autism. Pediatrics 1991;87:781-790 4. Courchesne E, Saitoh 0. Yeung-Courchesne R, et al. Abnormality of crrebellar vernii;in lobules V1 and VII in patients with infantile autism: identification of hypoplastic and hyperplasric subgroups with MR imaging. Am J Radio1 1994;162:123-130 5. Ritvo ER, Garber HJ. Cerebellar hypoplasia and autism. N Engl J Med 1988;3 19: 1 152 6. Kleiman MD, Neff S. liosinan NP. The brain in infantile autism: are posterior fotsa structures abnormal? Neurology 1992: 42:753-760 7. Piven J. Nehme E. Simon J, et RI. Magnetic resonance imaging in autism: measurement of the cerebellum. pons, and fourth ventriclr. Biol Psychiatry 1992;31:491-504 8. Schaefer GB. Thompson J N Jr. Bodensteiner JB. et al. Agerelated changes in rhe relative growth of the posterior fossa. J Child
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is thought to produce parkinsonism in humans and other primates through its inhibition of complex I. The recent discovery of mitochondrial complex I deficiency in the substantia nigra of patients with Parkinson's disease has provided a remarkable link between the idiopathic disease and the action of the neurotoxin MPTP. This article shows that complex I deficiency in Parkinson's disease is anatomically specific for the substantia nigra, and is not present in another neurodegenerative disorder involving the substantia nigra. Evidence is also provided to show that there is no correlation between L-3,4-dihydroxyphenylalanine therapy and complex I deficiency. These results suggest that complex I deficiency may be the underlying cause of dopaminergic cell death in Parkinson's disease.
The recent discovery of mitochondrial complex I deficiency in the substantia nigra of patients with idiopathic Parkinson's disease has provided new understanding into the possible mechanisms that may underlie this neurodegenerative disorder. The biochemical defect is identical to that induced in humans, primates and mice exposed to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. We have studied mitochondrial respiratory chain function in various brain regions, in skeletal muscle and in blood platelets from patients with idiopathic Parkinson's disease and from matched controls. We provide evidence suggesting that the complex I deficiency in Parkinson's disease is limited to the brain and that this defect is specific for the substantia nigra. The tissue specificity of the complex I deficiency in Parkinson's disease and its localization to the substantia nigra support the proposition that complex I deficiency may be directly involved in the cause of dopaminergic cell death in Parkinson's disease. An understanding of the molecular basis of this biochemical defect will provide valuable insight into the cause of Parkinson's disease. Our findings of normal mitochondrial function in platelet homogenates suggests that this tissue cannot be used to develop a 'diagnostic test' for Parkinson's disease.
Brain tissue from normal individuals with incidental Lewy bodies and cell loss in pigmented substantia nigra neurons (asymptomatic Parkinson's disease) and age-matched control subjects without nigral Lewy bodies was examined biochemically. There was no difference in dopamine levels or dopamine turnover in the caudate and putamen of individuals with incidental Lewy body disease compared to control subjects. There were no differences in levels of iron, copper, manganese, or zinc in the substantia nigra or other brain regions from the individuals with incidental Lewy body disease compared to those from control subjects. Similarly, ferritin levels in the substantia nigra and other brain areas were unaltered. There was no difference in the activity of succinate cytochrome c reductase (complexes II and III) or cytochrome oxidase (complex IV) between incidental Lewy body subjects and control subjects. Rotenone-sensitive NADH coenzyme Q1 reductase activity (complex I) was reduced to levels intermediate between those in control subjects and those in patients with overt Parkinson's disease, but this change did not reach statistical significance. The levels of reduced glutathione in substantia nigra were reduced by 35% in patients with incidental Lewy body disease compared to control subjects. Reduced glutathione levels in other brain regions were unaffected and there were no changes in oxidized glutathione levels in any brain region. Altered iron metabolism is not detectable in the early stages of nigral dopamine cell degeneration. There may be some impairment of mitochondrial complex I activity in the substantia nigra in Parkinson's disease.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.