This article is focused on the formation of hydride blisters in zirconium alloys an experimental and theoritical standpoint, and their characterization in terms of morphology, hydrides crystallographic phases, hardness and hydrogen concentration. An experimental setup was developed to grow hydride blisters on pre-hydrided Zircaloy-4 cladding tubes by thermo-diffusion. The thermal conditions were optimized based on thermo-diffusion calculations, that take into account the hysteresis in the hydrogen solubility limit, to obtain a high blister growth rate. Micro X-Ray Diffraction (XRD), nano-hardness and Elastic Recoil Detection Analysis (ERDA) showed that the blisters contain a hydrogen gradient, with pure δ-hydride phase close to the external surface over one third of the blister depth. thermo-diffusion * Tel.: +33 1 69 08 39 43; e-mail: arthur.hellouin-de-menibus@cea.fr 1 calculations showed these half thickness blisters should grow in only a few days in PWR conditions. Eventually, the Diffusion Equilibrium Threshold (DET) was defined as a criterion that limits the blister growth, and emphasizes that the hysteresis in the hydrogen solubility limit in zirconium must be taken into account to model hydrogen thermo-diffusion in zirconium alloys.
test, which induces a near uniaxial loading, were proposed and developed to reach higher biaxiality ratios (ratio between mechanical quantities in axial and in circumferential direction). The first optimization, named HB-EDC for High-Biaxiality EDC, allowed to reach transverse plane strain conditions. The second optimization, named VHB-EDC for Very High Biaxiality EDC, was designed to reach higher loading biaxiality ratios. These optimized EDC tests were performed * Tel.: +33 1 69 08 39 43; e-mail: arthur.hellouin-de-menibus@cea.fr 1 at 25 • C, 350 • C and 480 • C on unirradiated hydrided Cold Worked Stress Relieved (CWSR) Zircaloy-4 samples. First, samples unhydrided or uniformly hydrided up to 1130 wppm were tested. Secondly, samples hydrided at 310 wppm with a hydride blister were tested. A large ductility reduction is induced by the increase in biaxiality level in absence of a hydride blister or with small blisters (<50 µm deep). The fracture strain decreases quickly with the blister depth at 25 • C, but more progressively at higher temperature. An equation that quantifies the fracture strain reduction with the blister depth is proposed. Eventually, one of the tests developed in the present study, the HB-EDC test, was proven to be a good compromise between the test complexity and the stress state reached. It is a good candidate to characterize the mechanical behaviour of irradiated cladding.
The influence of hydride blister on cold worked stress relieved Zircaloy-4 cladding tubes fracture toughness at room temperature was studied using hoop tensile tests and plane strain tensile tests. The experimental macroscopic fracture stress and strain values and an elastic-plastic finite element analysis of the mechanical tests with the CAST3M code were used to calculate the J-integral and estimate the fracture toughness for several blister depths from 120 to 240 μm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.