A vehicle mobility estimator has been developed to produce decision aid maps for projecting civil or military forces on operational theatres. Based on the exploitation of classical geographical sources (e.g. digital elevation models, optical images, and vector databases) and thematic sources (e.g. climate, meteorological, pedological and land cover databases), the system computes speed maps for different kinds of vehicles moving both on‐road and off‐road. Such computations are realized through a ground‐vehicle interaction module that estimates the vehicle performance from experimental results, numerical simulations and empirical relationships. The system's architecture is built using a GIS interface that manages the data, the computation and the presentation layers. An operational version of this tool has been tested and validated on several operational theatres in France and in northern Africa. The results show good agreement between the predicted mobility performance of various vehicles and those observed on the field. A case study is presented to illustrate the mobility maps and demonstrate their relevance in the decision‐making chain depending on different climate contexts. A short application to itinerary optimization is presented as a promising future application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.