No abstract
We designed a machine learning algorithm that identifies patterns between ESG profiles and financial performances for companies in a large investment universe. The algorithm consists of regularly updated sets of rules that map regions into the high-dimensional space of ESG features to excess return predictions. The final aggregated predictions are transformed into scores which allow us to design simple strategies that screen the investment universe for stocks with positive scores. By linking the ESG features with financial performances in a non-linear way, our strategy based upon our machine learning algorithm turns out to be an efficient stock picking tool, which outperforms classic strategies that screen stocks according to their ESG ratings, as the popular best-in-class approach. Our paper brings new ideas in the growing field of financial literature that investigates the links between ESG behavior and the economy. We show indeed that there is clearly some form of alpha in the ESG profile of a company, but that this alpha can be accessed only with powerful, non-linear techniques such as machine learning.
Interpretability is becoming increasingly important for predictive model analysis. Unfortunately, as remarked by many authors, there is still no consensus regarding this notion. The goal of this paper is to propose the definition of a score that allows for quickly comparing interpretable algorithms. This definition consists of three terms, each one being quantitatively measured with a simple formula: predictivity, stability and simplicity. While predictivity has been extensively studied to measure the accuracy of predictive algorithms, stability is based on the Dice-Sorensen index for comparing two rule sets generated by an algorithm using two independent samples. The simplicity is based on the sum of the lengths of the rules derived from the predictive model. The proposed score is a weighted sum of the three terms mentioned above. We use this score to compare the interpretability of a set of rule-based algorithms and tree-based algorithms for the regression case and for the classification case.
We introduce a procedure to generate an estimator of the regression function based on a data-dependent quasi-covering of the feature space. A quasi-partition is generated from the quasi-covering and the estimator predicts the conditional empirical expectation over the cells of the quasi-partition. We provide sufficient conditions to ensure the consistency of the estimator. Each element of the quasi-covering is labeled as significant or insignificant. We avoid the condition of cell shrinkage commonly found in the literature for data-dependent partitioning estimators. This reduces the number of elements in the quasi-covering. An important feature of our estimator is that it is interpretable.The proof of the consistency is based on a control of the convergence rate of the empirical estimation of conditional expectations, which is interesting in itself.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.