Protein secondary structure prediction is one of the problems in the Bioinformatics field, which conducted to find the function of proteins. Protein secondary structure prediction is done by classifying each sequence of protein primary structure into the sequence of protein secondary structure, which fall in sequence labelling problems and can be solved with the machine learning. Convolutional Neural Network (CNN) and Support Vector Machine (SVM) are 2 methods that often used to solve classification problems. In this research, we proposed a hybrid of 1-Dimensional CNN and SVM to predict the secondary structure of the protein. In this research, we used a novel hybrid 1-Dimensional CNN and SVM for sequence labelling, specifically to predict the secondary structure of the protein. Our hybrid model managed to outperform previous studies in term of Q3 and Q8 accuracy on CB513 dataset.
Purpose: More and more data are stored in text form due to technological developments, making text data processing more difficult. It also causes problems in the text preprocessing algorithm, one of which is when two texts are identical, but are considered distinct by the algorithm. Therefore, it is necessary to normalize the text to get the standard form of words in a particular language. Spelling correction is often used to normalize text, but for Bahasa Indonesia, there has not been much research on the spell correction algorithm. Thus, there needs to be a comparison of the most appropriate spelling correction algorithms for the normalization process to be effective.Methods: In this study, we compared three algorithms, namely Levenshtein Distance, Jaro-Winkler Distance, and Smith-Waterman. These algorithms were evaluated using questionnaire data and tweet data, which both are in Bahasa Indonesia.Result: The fastest normalization time is obtained by the Jaro-Winkler, taking an average of 31.01 seconds for questionnaire data and 59.27 seconds for tweet data. The best accuracy is obtained by the Levenshtein Distance with a value of 44.90% for the questionnaire data and 60.04% for the tweet data. Novelty: The novelty of this research is to compare the similarity measure algorithm in Bahasa Indonesia. Therefore, the most suitable similarity measure algorithm for Bahasa Indonesia will be obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.