We obtain a sharp quantitative isoperimetric inequality for nonlocal s-perimeters, uniform with respect to s bounded away from 0. This allows us to address local and global minimality properties of balls with respect to the volume-constrained minimization of a free energy consisting of a nonlocal s-perimeter plus a non-local repulsive interaction term. In the particular case s = 1, the s-perimeter coincides with the classical perimeter, and our results improve the ones of Knuepfer and Muratov (Comm. Pure Appl. Math. 66 (7):1129-1162, 2013; Comm. Pure Appl. Math., 2014) concerning minimality of balls of small volume in isoperimetric problems with a competition between perimeter and a nonlocal potential term. More precisely, their result is extended to its maximal range of validity concerning the type of nonlocal potentials considered, and is also generalized to the case where local perimeters are replaced by their nonlocal counterparts.
We investigate a model corresponding to the experiments for a two-dimensional rotating Bose-Einstein condensate. It consists in minimizing a Gross-Pitaevskii functional defined in R 2 under the unit mass constraint. We estimate the critical rotational speed 1 for vortex existence in the bulk of the condensate and we give some fundamental energy estimates for velocities close to 1 .
This paper is devoted to the asymptotic analysis of a fractional version of the Ginzburg-Landau equation in bounded domains, where the Laplacian is replaced by an integro-differential operator related to the square root Laplacian as defined in Fourier space. In the singular limit ε → 0, we show that solutions with uniformly bounded energy converge weakly to sphere valued 1/2-harmonic maps, i.e., the fractional analogues of the usual harmonic maps. In addition, the convergence holds in smooth functions spaces away from a countably H n−1 -rectifiable closed set of finite (n − 1)-Hausdorff measure. The proof relies on the representation of the square root Laplacian as a Dirichlet-to-Neumann operator in one more dimension, and on the analysis of a boundary version of the Ginzburg-Landau equation. Besides the analysis of the fractional Ginzburg-Landau equation, we also give a general partial regularity result for stationary 1/2-harmonic maps in arbitrary dimension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.