Significance
The Phillips catalyst—CrO
x
/SiO
2
—produces 40–50% of global high-density polyethylene, yet several fundamental mechanistic controversies surround this catalyst. What is the oxidation state and nuclearity of the active Cr sites? How is the first Cr–C bond formed? How does the polymer propagate and regulate its molecular weight? Here we show through combined experimental (infrared, ultraviolet-visible, X-ray near edge absorption spectroscopy, and extended X-ray absorption fine structures) and density functional theory modeling approaches that mononuclear tricoordinate Cr(III) sites immobilized on silica polymerize ethylene by the classical Cossee–Arlman mechanism. Initiation (C–H bond activation) and polymer molecular weight regulation (the microreverse of C–H activation) are controlled by proton transfer steps.
The present paper reports the first example of a controlled radical polymerization of ethylene using reversible addition-fragmentation chain transfer (RAFT) in the presence of xanthates (Alkyl-OC(=S)S-R) as controlling agents under relative mild conditions (70 °C, <200 bars). The specific reactivity of the produced alkyl-type propagating radicals induces a side fragmentation reaction of the stabilizing O-alkyl Z group of the controlling agents. This fragmentation, rarely observed in RAFT, was proven by NMR analyses. In addition, semicrystalline copolymers of ethylene and vinyl acetate were also prepared with a similar level of control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.