Frizzled 3 receptor (FZD3) plays an important role in the homeostasis of the neural crest and its derivatives, which give rise to pigment-synthesizing cells, melanocytes. While the role for FZD3 in specification of the melanocytic lineage from neural crest is well established, its significance in the formation of melanoma, its associated malignancy, is less understood. In this study we identified FZD3 as a critical regulator of human melanoma tumorigenesis. Down-regulation of FZD3 abrogated growth, colony-forming potential, and invasive capacity of patient-derived melanoma cells. Xenotransplantation of tumor cells with down-regulated FZD3 levels originating from melanomas carrying the BRAF(V600) mutation uniformly suppressed their capacity for tumor and metastasis formation. FZD3 knockdown leads to the down-regulation of the core cell cycle protein components (cyclins D1, E2, B1, and CDKs 1, 2, and 4) in melanomas with a hyperactive BRAF oncogene, indicating a dominant role of this receptor during melanoma pathogenesis. Enriched pathway analysis revealed that FZD3 inhibits transcriptional networks controlled by CREB5, FOXD1, and ATF3, which suppress the activity of MAPK-mediated signaling. Thus, FZD3 establishes a positive-feedback mechanism that activates MAPK signal transduction network, critical to melanoma carcinogenesis. Importantly, high levels of FZD3 mRNA were found to be correlated with melanoma advancement to metastatic stages and limited patient survival. Changes in gene-expression patterns mediated by FZD3 activity occur in the absence of nuclear β-catenin function, thus representing an important therapeutic target for the melanoma patients whose disease progresses independent of canonical WNT signaling.
Recently, a non-DNA binding protein, class II transactivator (CIITA), has been shown to be required for constitutive and IFN-gamma-inducible class II MHC transcription. The cytokine TGF-beta inhibits IFN-gamma-induced class II MHC expression at the transcriptional level. In this study, we provide evidence that TGF-beta blocks IFN-gamma-induced CIITA mRNA accumulation. TGF-beta down-regulates class II MHC and CIITA mRNA accumulation in human astroglioma and fibrosarcoma cell lines, but TGF-beta does not destabilize the CIITA message, suggesting an effect at the transcriptional level. In cells that stably overexpressed CIITA, leading to a constitutive class II MHC-positive phenotype, the inhibitory effect of TGF-beta on class II MHC was abrogated, but the cells remained responsive for expression of TGF-beta-inducible genes. Cell lines that possessed defects in TGF-beta signaling also became refractory to inhibition of IFN-gamma-induced CIITA and class II MHC expression. Our data indicate that TGF-beta suppresses IFN-gamma-induced class II MHC expression by inhibiting accumulation of CIITA mRNA.
Background: The anatomy course offers important opportunities to develop professionalism at an early stage in medical education. It is an academically significant course that also engenders stress in some students.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.