Reduced susceptibility to infectious disease can increase the frequency of otherwise deleterious alleles. In populations of African ancestry, two apolipoprotein-L1 (APOL1) variants with a recessive kidney disease risk, named G1 and G2, occur at high frequency. APOL1 is a trypanolytic protein that confers innate resistance to most African trypanosomes, but not Trypanosoma brucei rhodesiense or T.b. gambiense, which cause human African trypanosomiasis. In this case-control study, we test the prevailing hypothesis that these APOL1 variants reduce trypanosomiasis susceptibility, resulting in their positive selection in sub-Saharan Africa. We demonstrate a five-fold dominant protective association for G2 against T.b. rhodesiense infection. Furthermore, we report unpredicted strong opposing associations with T.b. gambiense disease outcome. G2 associates with faster progression of T.b. gambiense trypanosomiasis, while G1 associates with asymptomatic carriage and undetectable parasitemia. These results implicate both forms of human African trypanosomiasis in the selection and persistence of otherwise detrimental APOL1 kidney disease variants.DOI: http://dx.doi.org/10.7554/eLife.25461.001
BackgroundCommunity engagement has been recognised as an important aspect of the ethical conduct of biomedical research, especially when research is focused on ethnically or culturally distinct populations. While this is a generally accepted tenet of biomedical research, it is unclear what components are necessary for effective community engagement, particularly in the context of genomic research in Africa.MethodsWe conducted a review of the published literature to identify the community engagement strategies that can support the successful implementation of genomic studies in Africa. Our search strategy involved using online databases, Pubmed (National Library of Medicine), Medline and Google scholar. Search terms included a combination of the following: community engagement, community advisory boards, community consultation, community participation, effectiveness, genetic and genomic research, Africa, developing countries.ResultsA total of 44 articles and 1 thesis were retrieved of which 38 met the selection criteria. Of these, 21 were primary studies on community engagement, while the rest were secondary reports on community engagement efforts in biomedical research studies. 34 related to biomedical research generally, while 4 were specific to genetic and genomic research in Africa.ConclusionWe concluded that there were several community engagement strategies that could support genomic studies in Africa. While many of the strategies could support the early stages of a research project such as the recruitment of research participants, further research is needed to identify effective strategies to engage research participants and their communities beyond the participant recruitment stage. Research is also needed to address how the views of local communities should be incorporated into future uses of human biological samples. Finally, studies evaluating the impact of CE on genetic research are lacking. Systematic evaluation of CE strategies is essential to determine the most effective models of CE for genetic and genomic research conducted in African settings.
A novel trypanocide, 2,5-bis(4-amidinophenyl)furan (DB75), in its prodrug amidoxime-derivative form, 2,5-bis(4-amidinophenyl)furan-bis-O-methylamidoxime (DB289), is in trials as the first orally administered drug for human African trypanosomiasis. DB75 is a diamidine. Resistance to some diamidines correlates to loss of uptake via the P2 aminopurine transporter. We show here that uptake of DB75 into Trypanosoma brucei also occurs principally via the P2 transporter. Uptake of tritiated DB75 occurred via a high-affinity (K m app , 3.2 M) carriermediated route that was inhibited by adenosine, adenine, and pentamidine, all known substrates of the P2 transporter. Trypanosomes lacking the TbAT1 gene that encodes the P2 transporter demonstrated an 11-fold reduction in sensitivity to DB75 when measured under controlled in vitro conditions. These knockout cells were also less sensitive to DB75 than wild-type cells in mice. Initial uptake rates of DB75 into the ⌬tbat1 knockout cell line were greatly reduced compared with rates in wildtype cells. A trypanosome cell line selected in vitro for DB75 resistance was shown to have lost P2-mediated DB75 uptake. The TbAT1 gene was mapped to chromosome V of the T. brucei genome and the DB75-resistant parasites were shown to have deleted both alleles of this gene. Fluorescence microscopy of DB75-treated trypanosomes revealed that DB75 fluorescence localizes rapidly within the DNA-containing organelles of wild-type trypanosomes, whereas no fluorescence was observed in ⌬tbat1-null parasites or in the parasites selected for resistance to DB75.
Dynamic models of metabolism can be useful in identifying potential drug targets, especially in unicellular organisms. A model of glycolysis in the causative agent of human African trypanosomiasis, Trypanosoma brucei, has already shown the utility of this approach. Here we add the pentose phosphate pathway (PPP) of T. brucei to the glycolytic model. The PPP is localized to both the cytosol and the glycosome and adding it to the glycolytic model without further adjustments leads to a draining of the essential bound-phosphate moiety within the glycosome. This phosphate “leak” must be resolved for the model to be a reasonable representation of parasite physiology. Two main types of theoretical solution to the problem could be identified: (i) including additional enzymatic reactions in the glycosome, or (ii) adding a mechanism to transfer bound phosphates between cytosol and glycosome. One example of the first type of solution would be the presence of a glycosomal ribokinase to regenerate ATP from ribose 5-phosphate and ADP. Experimental characterization of ribokinase in T. brucei showed that very low enzyme levels are sufficient for parasite survival, indicating that other mechanisms are required in controlling the phosphate leak. Examples of the second type would involve the presence of an ATP:ADP exchanger or recently described permeability pores in the glycosomal membrane, although the current absence of identified genes encoding such molecules impedes experimental testing by genetic manipulation. Confronted with this uncertainty, we present a modeling strategy that identifies robust predictions in the context of incomplete system characterization. We illustrate this strategy by exploring the mechanism underlying the essential function of one of the PPP enzymes, and validate it by confirming the model predictions experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.