Syncytial cells in soybean (Glycine max cultivar [cv.] Peking) roots infected by incompatible and compatible populations of soybean cyst nematode (SCN [Heterodera glycines]) were collected using laser capture microdissection (LCM). Gene transcript abundance was assayed using Affymetrix soybean GeneChips, each containing 37,744 probe sets. Our analyses identified differentially expressed genes in syncytial cells that are not differentially expressed in the whole root analyses. Therefore, our results show that the mass of transcriptional activity occurring in the whole root is obscuring identification of transcriptional events occurring within syncytial cells. In syncytial cells from incompatible roots at three dpi, genes encoding lipoxygenase (LOX), heat shock protein (HSP) 70, superoxidase dismutase (SOD) were elevated almost tenfold or more, while genes encoding several transcription factors and DNA binding proteins were also elevated, albeit at lower levels. In syncytial cells formed during the compatible interaction at three dpi, genes encoding prohibitin, the epsilon chain of ATP synthase, allene oxide cyclase and annexin were more abundant. By 8 days, several genes of unknown function and genes encoding a germin-like protein, peroxidase, LOX, GAPDH, 3-deoxy-D-arabino-heptolosonate 7-phosphate synthase, ATP synthase and a thioesterase were abundantly expressed. These observations suggest that gene expression is different in syncytial cells as compared to whole roots infected with nematodes. Our observations also show that gene expression is different between syncytial cells that were isolated from incompatible and compatible roots and that gene expression is changing over the course of syncytial cell development as it matures into a functional feeding site.
The syncytium is a nurse cell formed within the roots of Glycine max by the plant parasitic nematode Heterodera glycines. Its development and maintenance are essential for nematode survival. The syncytium appears to undergo two developmental phases during its maturation into a functional nurse cell. The first phase is a parasitism phase where the nematode establishes the molecular circuitry that during the second phase ensures a compatible interaction with the plant cell. The cytological features of syncytia undergoing susceptible or resistant reactions appear the same during the parasitism phase. Depending on the outcome of any defense response, the second phase is a period of syncytium maintenance (susceptible reaction) or failure (resistant reaction). In the analyses presented here, the localized gene expression occurring at the syncytium during the resistant reaction was studied. This was accomplished by isolating syncytial cells from Glycine max genotype Peking (PI 548402) by laser capture microdissection. Microarray analyses using the Affymetrix soybean GeneChip directly compared Peking syncytia undergoing a resistant reaction to those undergoing a susceptible reaction during the parasitism phase of the resistant reaction. Those analyses revealed lipoxygenase-9 and lipoxygenase-4 as the most highly induced genes in the resistant reaction. The analysis also identified induced levels of components of the phenylpropanoid pathway. These genes included phenylalanine ammonia lyase, chalcone isomerase, isoflavone reductase, cinnamoyl-CoA reductase and caffeic acid O-methyltransferase. The presence of induced levels of these genes implies the importance of jasmonic acid and phenylpropanoid signaling pathways locally at the site of the syncytium during the resistance phase of the resistant reaction. The analysis also identified highly induced levels of four S-adenosylmethionine synthetase genes, the EARLY-RESPONSIVE TO DEHYDRATION 2 gene and the 14-3-3 gene known as GENERAL REGULATORY FACTOR 2. Subsequent analyses studied microdissected syncytial cells at 3, 6 and 9 days post infection (dpi) during the course of the resistant reaction, resulting in the identification of signature gene expression profiles at each time point in a single G. max genotype, Peking.
The development of an infection in soybean [Glycine max L. cultivar (cv.) Peking] roots by incompatible (I) and compatible (C) populations of soybean cyst nematode (SCN) (Heterodera glycines) was assayed using an AffymetriX soybean GeneChip. This time-course microarray analysis, using 37,744 probe sets, measured transcript abundance during I and C. These analyses reveal that infection by individual I and C H. glycines populations influence the transcription of G. max genes differently. A substantial difference in gene expression is present between I and C at 12 h post infection. Thus, G. max can differentiate between I and C nematode populations even before they have begun to select their feeding sites. The microarray analysis identified genes induced earlier in infection during I than C. MA also identified amplitude differences in transcript abundance between I and C reactions. Some of the probe sets measuring increased transcript levels during I represented no apical meristem (NAM) and WRKY transcription factors as well as NBS-LRR kinases. Later during I, heat shock protein (HSPs) probe sets (i.e. HSP90, HSP70, ClpB/HSP101) measured increased transcript abundance. These results demonstrate that G. max roots respond very differently to the different H. glycines races even before their feeding site selection has occurred. The ability of G. max to engage an I reaction, thus, appears to be dependent on the ability of root cells to recognize the different races of H. glycines because these experiments were conducted in the identical G. max genetic background.
A Glycine max syntaxin 31 homolog (Gm-SYP38) was identified as being expressed in nematode-induced feeding structures known as syncytia undergoing an incompatible interaction with the plant parasitic nematode Heterodera glycines. The observed Gm-SYP38 expression was consistent with prior gene expression analyses that identified the alpha soluble NSF attachment protein (Gm-α-SNAP) resistance gene because homologs of these genes physically interact and function together in other genetic systems. Syntaxin 31 is a protein that resides on the cis face of the Golgi apparatus and binds α-SNAP-like proteins, but has no known role in resistance. Experiments presented here show Gm-α-SNAP overexpression induces Gm-SYP38 transcription. Overexpression of Gm-SYP38 rescues G. max [Williams 82/PI 518671], genetically rhg1 (-/-), by suppressing H. glycines parasitism. In contrast, Gm-SYP38 RNAi in the rhg1 (+/+) genotype G. max [Peking/PI 548402] increases susceptibility. Gm-α-SNAP and Gm-SYP38 overexpression induce the transcriptional activity of the cytoplasmic receptor-like kinase BOTRYTIS INDUCED KINASE 1 (Gm-BIK1-6) which is a family of defense proteins known to anchor to membranes through a 5' MGXXXS/T(R) N-myristoylation sequence. Gm-BIK1-6 had been identified previously by RNA-seq experiments as expressed in syncytia undergoing an incompatible reaction. Gm-BIK1-6 overexpression rescues the resistant phenotype. In contrast, Gm-BIK1-6 RNAi increases parasitism. The analysis demonstrates a role for syntaxin 31-like genes in resistance that until now was not known.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.