The effect of towns on plant phenology, i.e. advancement of spring development compared with a rural environment, via the urban heat island (UHI) phenomenon, has been shown for many towns in many countries. This work combines experimental and observational methodology to provide a better and deeper view of climatic habitat in an urban context with a view to understanding the relationship between plant development and urban climate on the intra-urban scale (by taking into account town structure). A dense network of 17 meteorological stations was set up in Rennes, France, enabling us to identify and quantify climatic changes associated with the UHI. Meanwhile, phenological observations were made during early spring (March and April) in 2005 on Platanus acerifolia and Prunus cerasus to study the relationship between climatic and phenological data. The results show that there is both a climatic gradient and a developmental gradient corresponding to the type of urbanisation in the town of Rennes. The town influences plant phenology by reducing the diurnal temperature range and by increasing the minimum temperature as one approaches the town centre. The influence of ground cover type (plants or buildings) on development is also shown. The developmental phases of preflowering and flowering are influenced to differing extents by climatic variables. The period during which climatic variables are effective before a given developmental phase varies considerably. The preflowering phases are best correlated with the mean of the minimum air temperature for the 15-day period before the observation, whereas flowering appears to be more dependent on the mean of the daily diurnal temperature range for the 8 days preceding the observation.
Aim Species–area relationships (SARs) are fundamental scaling laws in ecology although their shape is still disputed. At larger areas, power laws best represent SARs. Yet, it remains unclear whether SARs follow other shapes at finer spatial grains in continuous vegetation. We asked which function describes SARs best at small grains and explored how sampling methodology or the environment influence SAR shape. Location Palaearctic grasslands and other non‐forested habitats. Taxa Vascular plants, bryophytes and lichens. Methods We used the GrassPlot database, containing standardized vegetation‐plot data from vascular plants, bryophytes and lichens spanning a wide range of grassland types throughout the Palaearctic and including 2,057 nested‐plot series with at least seven grain sizes ranging from 1 cm2 to 1,024 m2. Using nonlinear regression, we assessed the appropriateness of different SAR functions (power, power quadratic, power breakpoint, logarithmic, Michaelis–Menten). Based on AICc, we tested whether the ranking of functions differed among taxonomic groups, methodological settings, biomes or vegetation types. Results The power function was the most suitable function across the studied taxonomic groups. The superiority of this function increased from lichens to bryophytes to vascular plants to all three taxonomic groups together. The sampling method was highly influential as rooted presence sampling decreased the performance of the power function. By contrast, biome and vegetation type had practically no influence on the superiority of the power law. Main conclusions We conclude that SARs of sessile organisms at smaller spatial grains are best approximated by a power function. This coincides with several other comprehensive studies of SARs at different grain sizes and for different taxa, thus supporting the general appropriateness of the power function for modelling species diversity over a wide range of grain sizes. The poor performance of the Michaelis–Menten function demonstrates that richness within plant communities generally does not approach any saturation, thus calling into question the concept of minimal area.
Aim Niche theory proposes that increases in species richness along an environmental gradient are associated with a packing of species inside the niche space or an expansion of the niche space. We test whether and under what conditions an increase in bird species richness along a gradient of resource availability is associated with an expansion or packing of the niche as measured based on traits related to resource use. Location Global. Time period Current. Major taxa studied Birds. Methods We measured birds' realized niche space as the standardized departure between observed total trait range and its null expectation (functional richness: SES.FRic) in 12,188 cells worldwide. We first correlated both species richness and this measurement along the global net primary productivity (NPP) gradient using linear regressions. Second, we investigated the non‐stationarity of the species richness–NPP relationship with Lee's bivariate correlation, a measure of the spatial association of two variables. We then assessed the number of cells exhibiting a significant positive species richness–NPP association and a significant negative or positive SES.FRic. Third, we assessed whether species of species‐rich assemblages occur within or outside the niche space of species‐poor assemblages. Results At a global scale, we found that species richness and SES.FRic increased with NPP. We also showed that cells with a significant positive association between species richness and NPP exhibited niche packing (1,699 assemblages out of 12,188) more than niche expansion (five assemblages). Niche packing was associated with complex biomes such as tropical rain forests. Finally, by showing that species in species‐rich assemblages predominantly occur within the niche space of species‐poor assemblages, we showed that the increase in SES.FRic with NPP contributed little to the increase in species richness. Main conclusion Although niche volume increases with species richness along an NPP gradient, we confirmed that niche packing is the pattern most associated with the species richness–NPP relationship at a global scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.