A Gram-negative, rod-shaped bacterium, strain Duganella callida DN04T, was isolated from the soil of a maize field in North Carolina, USA. Based on the 16S rRNA gene sequence, the most similar Duganella species are D. sacchari Sac-22T, D. ginsengisoli DCY83T, and D. radicis Sac-41T with a 97.8, 97.6, or 96.9 % sequence similarity, respectively. We compared the biochemical phenotype of DN04T to D. sacchari Sac-22T and D. zoogloeoides 115T and other reference strains from different genera within the Oxalobacteraceae and while the biochemical profile of DN04T is most similar to D. sacchari Sac-22T and other Duganella and Massilia strains, there are also distinct differences. DN04T can for example utilize turanose, N-acetyl-d-glucosamine, inosine, and l-pyroglutamic acid. The four fatty acids found in the highest percentages were C15 : 0 iso (24.6 %), C15 : 1 isoG (19.4 %), C17 : 0 iso3-OH (16.8 %), and summed feature 3 (C16:1 ⍵7c and/or C16:1 ⍵6c) (12.5 %). We also applied whole genome sequencing to determine if DN04T is a novel species. The most similar AAI (average amino acid identity) score was 70.8 % ( Massilia plicata NZ CP038026T), and the most similar ANI (average nucleotide identity) score was 84.8 % ( D. radicis KCTC 22382T), which indicates that DN04T is a novel species. The genome-to-genome-distance calculation (GGDC) revealed a DDH of 28.3 % to D. radicis KCTC 22382T, which is much lower than the new species threshold. Based on the morphological, phenotypic, and genomic differences, we propose Duganella callida sp. nov. as a novel species within the Duganella genus (type strain DN04T=NRRL B-65552T=LMG 31736T).
We isolated two new soil bacteria: ONC3T (from garden soil in NC, USA; LMG 31738T=NRRL B-65553T) and M1T (from farmed soil in MI, USA; NRRL B-65551T=ATCC TSD-197T=LMG 31739T) and characterized their metabolic phenotype based on Biolog, MALDI-TOF MS and fatty acid analyses, and compared 16S rRNA and whole genome sequences to other members of the Oxalobacteraceae after sequencing on an Illumina Nextera platform. Based on the results of 16S rRNA sequence analysis, ONC3T shows the highest sequence similarity to Massilia solisilvae J18T (97.8 %), Massilia terrae J11T (97.7 %) and Massilia agilis J9T (97.3 %). Strain M1T is most closely related to Noviherbaspirillum denitrificans TSA40T, Noviherbaspirillum agri K-1-15T and Noviherbaspirillum autotrophicum TSA66T (sequence identity of 98.2, 98.0 and 97.8 %, respectively). The whole genome of ONC3T has an assembled size of 5.62 Mbp, a G+C content of 63.8 mol% and contains 5104 protein-coding sequences, 56 tRNA genes and two rRNA operons. The genome of M1T has a length of 4.71 MBp, a G+C content of 63.81 mol% and includes 4967 protein-coding genes, two rRNA operons and 44 tRNA genes. Whole genome comparisons identified Massilia sp. WG5 with a 79.3 % average nucleotide identity (ANI) and 22.6 % digital DNA–DNA hybridization (dDDH), and Massilia sp. UBA11196 with 78.2 % average amino acid identity (AAI) as the most closely related species to ONC3T. M1T is most closely related to N. autotrophicum TSA66T with an ANI of 80.27 %, or N. denitrificans TSA40T with a dDDH of 22.3 %. The application of community-accepted standards such as <98.7 % in 16S sequence similarity and <95–96 % ANI or 70 % DDH support the classification of Massilia horti ONC3T and Noviherbaspirillum arenae M1T as novel species within the Oxalobacteraceae .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.