We report a new hot-drawing process for treating wet-spun composite fibers made of single- and multiwall carbon nanotubes and poly(vinyl alcohol). As shown in previous reports, untreated composite nanotube fibers exhibit a very large strain-to-failure, and their toughness, which is the energy needed to break the fibers, exceeds that of any other known materials. However, untreated composite nanotube fibers absorb a very small amount of energy at low strain and become degraded in humid conditions. In this work, we use hot-drawing treatments, a concept inspired from textile technologies, to improve the properties of nanotube/PVA fibers. This treatment yields a crystallinity increase of the PVA and an unprecedented degree of alignment of the nanotubes. These structural modifications lead to a markedly improved energy absorption at low strain and make the fibers resistant to moisture. Hot-drawn nanotube/PVA fibers hold great potential for a number of applications such as bulletproof vests, protective textiles, helmets, and so forth.
We synthesized aligned multiwalled carbon nanotube multilayers by aerosol-assisted catalytic chemical vapor deposition through sequential injections of aerosols containing both carbon and catalyst precursors. Each sequence was traced by a specific duration or precursor mixture, with the carbon source being possibly enriched in (13)C isotope labels. We discovered that any sequence involved the growth of a new layer on the substrate surface, under any pre-existing one by lifting it up, giving definitive evidence of a base-growth mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.