Nodal marginal zone lymphoma (NMZL) is a rare small B-cell lymphoma lacking disease-defining phenotype and precise diagnostic markers. To better understand the mutational landscape of NMZL, particularly in comparison to other nodal small B-cell lymphomas, we performed whole-exome sequencing, targeted high-throughput sequencing, and array-comparative genomic hybridization on a retrospective series. Our study identified for the first time recurrent, diagnostically useful, and potentially therapeutically relevant BRAF mutations in NMZL. Sets of somatic mutations that could help to discriminate NMZL from other closely related small B-cell lymphomas were uncovered and tested on unclassifiable small B-cell lymphoma cases, in which clinical, morphological, and phenotypical features were equivocal. Application of targeted gene panel sequencing gave at many occasions valuable clues for more specific classification.
BackgroundImmune checkpoint inhibitors (ICPis) have revolutionised the treatment of melanoma by significantly increasing survival rates and disease control. However, ICPis can have specific immune-related adverse events, including rare but severe neurological toxicity.Case presentationWe report a 44-year-old man diagnosed with stage IIIB melanoma who developed metastatic disease (pulmonary and brain metastases) and was treated with stereotactic radiosurgery and nivolumab immunotherapy. He developed asymptomatic multifocal diffuse white matter lesions consistent with active central nervous system demyelination seen on brain MRI. One month after cessation of the immunotherapy, spontaneous regression of the demyelinating lesions was observed, suggesting a nivolumab-related toxicity.ConclusionWe report the first case of a melanoma patient with an asymptomatic and spontaneously reversible central nervous system demyelination following nivolumab immunotherapy. This case highlights the need for better recognition of such atypical and rare neurological toxicities which could be mistaken for progressive brain metastases. Early recognition and appropriate management are crucial to reduce severity and duration of these toxicities, especially for patients with less favourable evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.