While surface acoustic wave (SAW) sensors have been used to measure temperature, pressure, strains, and low magnetic fields, the capability to measure bipolar fields and high fields is lacking. In this paper, we report magnetic surface acoustic wave sensors that consist of interdigital transducers made of a single magnetostrictive material, either Ni or TbFe 2 , or based on exchange-biased (Co=IrMn) multilayers. By controlling the ferromagnet magnetic properties, high-field sensors can be obtained with unipolar or bipolar responses. The issue of hysteretic response of the ferromagnetic material is especially addressed, and the control of the magnetic properties ensures the reversible behavior in the SAW response.
In this paper, we report experimental evidence of anomalous and planar Righi-Leduc effects on NiFe. The Righi-Leduc effect is the thermal analog of the Hall effect, in which the electric current is replaced by the heat current and the electric field by the temperature gradient. When the material is ferromagnetic, it is well known that there are two other contributions to the Hall voltage which depend on the orientation of the magnetization. These two extra contributions are called the anomalous Hall effect when the magnetization is out of the plane of the sample and the planar Hall effect when the magnetization is in the plane of the sample. In the same way, an anomalous and a planar Righi-Leduc effects are shown to appear when a transverse temperature gradient is generated by a heat current.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.