The equilibrium between the ventricular and lumbar cerebrospinal fluid (CSF) compartments may be disturbed (in terms of flow and biochemistry) in patients with chronic hydrocephalus (CH). Using flow magnetic resonance imaging (MRI) and CSF assays, we sought to determine whether changes in CSF were associated with biochemical alterations. Nine elderly patients with CH underwent phase-contrast MRI. An index of CSF dynamics (Idyn) was defined as the product of the lumbar and ventricular CSF flows. During surgery, samples of CSF were collected from the lumbar and ventricular compartments and assayed for chloride, glucose and total protein. The lumbar/ventricular (L/V) ratio was calculated for each analyte. The ratio between measured and expected levels (Ibioch) was calculated for each analyte and compared with Idyn. Idyn varied from 0 to 100.103μl2.s2. In contrast to the L/V ratios for chloride and glucose, the L/V ratio for total protein varied markedly from one patient to another (mean ± standard deviation (SD): 2.63 ± 1.24). The Ibioch for total protein was strongly correlated with the corresponding Idyn (Spearman’s R: 0.98; p < 5 × 10−5).We observed correlated alterations in CSF flow and biochemical parameters in patients with CH. Our findings also highlight the value of dynamic flow analysis in the interpretation of data on CSF biochemistry.
Neuroinflammation and iron accumulation are hallmarks of a variety of adult neurodegenerative diseases. In Sanfilippo syndrome (mucopolysaccharidosis type III, MPSIII, a pediatric neurodegenerative disease that shares some features with adult neurodegenerative diseases), the progressive accumulation of heparan sulfate oligosaccharides (HSOs) induces microglia and astrocytes to produce pro-inflammatory cytokines leading to severe neuroinflammation. The objectives of the present study were (1) to measure the local iron concentration and to assess iron metabolism in the brain of a MPSIIIB murine model and (2) to identify the brain cells involved in this accumulation. We found that iron accumulation in MPSIIIB mice primarily affected the cerebral cortex where hepcidin levels were higher than in wild-type mice, and increased with aging. This increase was correlated with low expression of ferroportin 1 (FPN1), and thus brain iron retention. Moreover, we showed in vitro that HSOs are directly responsible for the production of hepcidin and the relative decrease in FPN1 expression when added to cultures of microglia and, to a lesser extent, to cultures of astrocytes. In contrast, no significant differences were observed in neurons. Hepcidin induction results from activation of the TLR4 pathway and STAT3 signaling, and leads to iron retention within microglia. Our results show that microglia have a key role in cerebral hepcidin overexpression and thus in the brain iron accumulation observed in the MPSIIIB model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.