While there are a plethora of algorithms for detecting changes in mean in univariate time-series, almost all struggle in real applications where there is autocorrelated noise or where the mean fluctuates locally between the abrupt changes that one wishes to detect. In these cases, default implementations, which are often based on assumptions of a constant mean between changes and independent noise, can lead to substantial over-estimation of the number of changes. We propose a principled approach to detect such abrupt changes that models local fluctuations as a random walk process and autocorrelated noise via an AR(1) process. We then estimate the number and location of changepoints by minimizing a penalized cost based on this model. We develop a novel and efficient dynamic programming algorithm, DeCAFS, that can solve this minimization problem; despite the additional challenge of dependence across segments, due to the autocorrelated noise, which makes existing algorithms inapplicable. Theory and empirical results show that our approach has greater power at detecting abrupt changes than existing approaches. We apply our method to measuring gene expression levels in bacteria. Supplementary materials for this article are available online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.