We report that the finite thickness of three-dimensional topological
insulator (TI) thin films produces an observable magnetoresistance (MR) in
phase coherent transport in parallel magnetic fields. The MR data of Bi2Se3 and
(Bi,Sb)2Te3 thin films are compared with existing theoretical models of
parallel field magnetotransport. We conclude that the TI thin films bring
parallel field transport into a unique regime in which the coupling of surface
states to bulk and to opposite surfaces is indispensable for understanding the
observed MR. The {\beta} parameter extracted from parallel field MR can in
principle provide a figure of merit for searching TI compounds with more
insulating bulk than existing materials.Comment: 6 pages, 4 figure
We study the disordered topological Anderson insulator in a two-dimensional (square not strip) geometry. We first report the phase diagram of finite systems and then study the evolution of phase boundaries when the system size is increased to a very large 1120 × 1120 area. We establish that conductance quantization can occur without a bulk band gap, and that there are two distinct scaling regions with quantized conductance: TAI-I with a bulk band gap, and TAI-II with localized bulk states. We show that there is no intervening insulating phase between the bulk conduction phase and the TAI-I and TAI-II scaling regions, and that there is no metallic phase at the transition between the quantized and insulating phases. Centered near the quantized-insulating transition there are very broad peaks in the eigenstate size and fractal dimension d 2 ; in a large portion of the conductance plateau eigenstates grow when the disorder strength is increased. The fractal dimension at the peak maximum is d 2 ≈ 1.5. Effective-medium theory (Coherent Potential Approximation, self-consistent Born approximation) predicts well the boundaries and interior of the gapped TAI-I scaling region, but fails to predict all boundaries save one of the ungapped TAI-II scaling region. We report conductance distributions near several phase transitions and compare them with critical conductance distributions for well-known models.
We present angle-resolved photoemission spectroscopy measurements of the quasi-one-dimensional superconductor K_{2}Cr_{3}As_{3}. We find that the Fermi surface contains two Fermi surface sheets, with linearly dispersing bands not displaying any significant band renormalizations. The one-dimensional band dispersions display a suppression of spectral intensity approaching the Fermi level according to a linear power law, over an energy range of ∼200 meV. This is interpreted as a signature of Tomonoga-Luttinger liquid physics, which provides a new perspective on the possibly unconventional superconductivity in this family of compounds.
We numerically demonstrate a practical means of systematically controlling topological transport on the surface of a three dimensional topological insulator, by introducing strong disorder in a layer of depth d extending inward from the surface of the topological insulator. The dependence on d of the density of states, conductance, scattering time, scattering length, diffusion constant, and mean Fermi velocity are investigated. The proposed control via disorder depth d requires that the disorder strength be near the large value which is necessary to drive the TI into the non-topological phase. If d is patterned using masks, gates, ion implantation, etc., then integrated circuits may be fabricated. This technique will be useful for experiments and for device engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.