Phenylalkylamines of the general formula C6H5(CH2)nNH2 (n = 1-4) have been delivered to the gas phase as protonated species using electrospray ionization. The ions thus formed have been assayed by IRMPD spectroscopy in two different spectroscopic domains, namely, the 600-1800 and the 3000-3500 cm(-1) regions using either an IR free electron laser or a tabletop OPO/OPA laser source. The interpretation of the experimental spectra is aided by density functional theory calculations of candidate species and vibrational frequency analyses. Protonated benzylamine presents a relatively straightforward instance of a single stable conformer, providing a trial case for the adopted approach. Turning to the higher homologues, C6H5(CH2)nNH3(+) (n = 2-4), more conformations become accessible. For each C6H5(CH2)nNH3(+) ion (n = 2-4), the most stable geometry is characterized by cation-π interactions between the positively charged ammonium group and the aromatic π-electronic system, permitted by the folding of the polymethylene chain. The IRMPD spectra of the sampled ions confirm the presence of the folded structures by comparison with the calculated IR spectra of the various possible conformers. An inspection of the NH stretching region is helpful in this regard.
Diethyl carbonate and dimethyl carbonate are prototype examples of eco-friendly solvents used in lithium-ion batteries. Nevertheless, their degradation products affect both the battery performance and its safety. Therefore, it is of paramount importance to understand the reaction mechanisms involved in the ageing processes. Among those, redox processes are likely to play a critical role. Here we show that radiolysis is an ideal tool to generate the electrolytes degradation products. The major gases detected after irradiation (H2, CH4, C2H6, CO and CO2) are identified and quantified. Moreover, the chemical compounds formed in the liquid phase are characterized by different mass spectrometry techniques. Reaction mechanisms are then proposed. The detected products are consistent with those of the cycling of Li-based cells. This demonstrates that radiolysis is a versatile and very helpful tool to better understand the phenomena occurring in lithium-ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.