Purpose Test the hypothesis that subretinal electrical stimulation from a microphotodiode array (MPA) exerts a neuroprotective effect in RCS rats through the induction of growth factors. Methods RCS rats were divided into four groups at P21 in which one eye per rat received treatment: (A) active MPA, (M) minimally-active MPA, (S) sham surgery, or (C) no surgery and the opposite eye was unoperated. Dark- and light-adapted ERGs were recorded one week after surgery. A second set of A-, M-, and C-treated RCS rats had weekly ERG recordings for 4 weeks. Real-time RT-PCR was used to measure relative expression of mRNAs (Bdnf, Fgf2, Fgf1, Cntf, Gdnf, and Igf1) in retina samples collected 2 days after the final ERG. Results One week after surgery, there was a slight difference in dark-adapted ERG b-wave at the brightest flash intensity. Mean retinal Fgf2 expression in the treated eye relative to the opposite eye was greatest for the A group (4.67 +/−0.72) compared to the M group (2.80 +/−0.45, p=0.0501), S group (2.03 +/−0.45, p<0.01), and C group (1.30 +/−0.22, p<0.001). No significant change was detected for Bdnf, Cntf, Fgf1, Gdnf, and Igf1. Four weeks after surgery, the A group had significantly larger dark- and light-adapted ERG b-waves compared to the M and C groups (p<0.01). Simultaneously, mean relative Fgf2 expression was again greatest for the A group (3.28 +/−0.61) compared to the M (1.28 +/− 0.32, p<0.05) and C groups (1.05 +/−0.04, p<0.05). Conclusion The results show subretinal implantation of an MPA induces selective expression of Fgf2 above that expected from a retina-piercing injury. Preservation of ERG b-wave amplitude 4 weeks after implantation is accompanied by elevated Fgf2 expression. These results suggest that Fgf2 may play a role in the neuroprotection provided by subretinal electrical stimulation.
Low-level electrical stimulation to the eye has been shown to be neuroprotective against retinal degeneration in both human and animal subjects, using approaches such as subretinal implants and transcorneal electrical stimulation. In this study, we investigated the benefits of whole-eye electrical stimulation (WES) in a rodent model of retinitis pigmentosa. Transgenic rats with a P23H-1 rhodopsin mutation were treated with 30 min of low-level electrical stimulation (4 μA at 5 Hz; n = 10) or sham stimulation (Sham group; n = 15), twice per week, from 4 to 24 weeks of age. Retinal and visual functions were assessed every 4 weeks using electroretinography and optokinetic tracking, respectively. At the final time point, eyes were enucleated and processed for histology. Separate cohorts were stimulated once for 30 min, and retinal tissue harvested at 1 h and 24 h post-stimulation for real-time PCR detection of growth factors and inflammatory and apoptotic markers. At all time-points after treatment, WES-treated rat eyes exhibited significantly higher spatial frequency thresholds than untreated eyes. Inner retinal function, as measured by ERG oscillatory potentials (OPs), showed significantly improved OP amplitudes at 8 and 12 weeks post-WES compared to Sham eyes. Additionally, while photoreceptor segment and nuclei thicknesses in P23H-1 rats did not change between treatment groups, WES-treated eyes had significantly greater numbers of retinal ganglion cell nuclei than Sham eyes at 20 weeks post-WES. Gene expression levels of brain-derived neurotrophic factor (BDNF), caspase 3, fibroblast growth factor 2 (FGF2), and glutamine synthetase (GS) were significantly higher at 1 h, but not 24 h after WES treatment. Our findings suggest that WES has a beneficial effect on visual function in a rat model of retinal degeneration and that post-receptoral neurons may be particularly responsive to electrical stimulation therapy.
Pseudomonas aeruginosa is a significant contributor to recalcitrant multidrug-resistant infections, especially in immunocompromised and hospitalized patients. The pathogenic profile of P. aeruginosa is related to its ability to secrete a variety of virulence factors and to promote biofilm formation. Quorum sensing (QS) is a mechanism wherein P. aeruginosa secretes small diffusible molecules, specifically acyl homo serine lactones, such as N-(3-oxo-dodecanoyl)-l-homoserine lactone (3O-C12-HSL), that promote biofilm formation and virulence via interbacterial communication. Strategies that strengthen the host's ability to inhibit bacterial virulence would enhance host defenses and improve the treatment of resistant infections. We have recently shown that peroxisome proliferator-activated receptor g (PPARg) agonists are potent immunostimulators that play a pivotal role in host response to virulent P. aeruginosa. Here, we show that QS genes in P. aeruginosa (strain PAO1) and 3O-C12-HSL attenuate PPARg expression in bronchial epithelial cells. PAO1 and 3O-C12-HSL induce barrier derangements in bronchial epithelial cells by lowering the expression of junctional proteins, such as zonula occludens-1, occludin, and claudin-4. Expression of these proteins was restored in cells that were treated with pioglitazone, a PPARg agonist, before infection with PAO1 and 3O-C12-HSL. Barrier function and bacterial permeation studies that have been performed in primary human epithelial cells showed that PPARg agonists are able to restore barrier integrity and function that are disrupted by PAO1 and 3O-C12-HSL. Mechanistically, we show that these effects are dependent on the induction of paraoxonase-2, a QS hydrolyzing enzyme, that mitigates the effects of QS molecules. Importantly, our data show that pioglitazone, a PPARg agonist, significantly inhibits biofilm formation on epithelial cells by a mechanism that is mediated via paraoxonase-2. These findings elucidate a novel role for PPARg in host defense against P. aeruginosa. Strategies that activate PPARg can provide a therapeutic complement for treatment of resistant P. aeruginosa infections.-
Although SES upregulated Fgf2 in mer(kd) retinas, as reported previously for RCS retinas, this was not accompanied by neuroprotection of photoreceptors. Comparisons of ERG responses from mer(kd) mice and RCS rats across different ages showed inner retinal dysfunction in mer(kd) mice but not in RCS rats. This inner retinal dysfunction and the faster rate of degeneration in mer(kd) mice may produce a retinal environment that is not responsive to neuroprotection from SES.
Although antiretroviral (ARV) therapy has reduced the incidence of severe dementia associated with HIV infection, there has been a rise in milder neurocognitive complaints. Data from HIV patients taking ARVs have shown measurable neurocognitive improvements during drug cessation, suggesting a neurotoxic role of the therapy itself. Mechanisms underlying potential ARV neurotoxicity have not been thoroughly investigated, however pathologic oxidative stress and mitochondrial dysfunction have been suspected. Using DIV 16 primary rat cortical neuron culture, we tested eight ARVs from the three most commonly prescribed ARV classes: nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs/NtRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors (PIs) for effects on neuron viability and morphology after 24 h of drug exposure. Of the tested NRTIs, only stavudine at nearly 100 times the target plasma concentration affected neuron viability with no appreciable change in morphology. Dideoxyinosine induced dendritic simplification at 100 times target plasma concentrations, but did not adversely affect viability. The sole NtRTI, tenofovir, induced dendritic simplification at approximately 3-4 times target plasma concentration, but did not affect viability. Of the tested PIs, only amprenavir decreased neuron viability at nearly 100 times the target plasma concentration. The non-nucleoside reverse transcriptase inhibitor, efavirenz, consistently reduced viability (at 50 µM) and induced dendritic simplification (at 20 µM) nearest the target plasma concentration. Probing mitochondrial energetics of DIV16 cortical neurons after exposure to 20 µM efavirenz showed rapid diminution of mitochondrial-dependent oxygen consumption. Further, 20 µM efavirenz decreased excitability in ex vivo slice culture whereas 2 µM had no effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.