Reaction of cyclopropanated trans-cyclooctene (cpTCO) with in situ generated ortho-quinone is an efficient tool for bioorthogonal protein conjugation. The (4+2)-cycloaddition of cpTCO with ortho-quinone is significantly faster than its cyclooctyne counterpart (BCN). Orthogonal, tandem cpTCO-quinone and BCN-azide cycloadditions afforded a homogeneous, dual labelled antibody-drug conjugate.
Probabilistic fasteners are known to provide strong attachment onto their respective surfaces. Examples are Vel-cro®and the "3M dual lock" system. However, these systems typically only function using specific counter surfaces and are often destructive to other surfaces such as fabrics. Moreover, the design parameters to optimize their functionality are not obvious. Here, we present a surface patterned with soft micrometric features inspired by the mushroom shape showing a non-destructive mechanical interlocking and thus attachment to fabrics. We provide a scalable experimental approach to prepare these surfaces and quantify the attachment strength with rheometric and video-based analysis. In these "probabilistic fasteners" we find that higher feature densities result in higher attachment force, however, the individual feature strength is higher on a low feature density surface. We interpret our results via a load-sharing principle common in fiber bundle models. Our work provides new handles for tuning the mechanical attachment properties of soft patterned surfaces that can be used in various applications including soft robotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.