Objective This purpose of this study was to describe and demonstrate CrossCheck, a multimodal data collection system designed to aid in continuous remote monitoring and identification of subjective and objective indicators of psychotic relapse. Methods Individuals with schizophrenia-spectrum disorders received a smartphone with the monitoring system installed along with unlimited data plan for 12 months. Participants were instructed to carry the device with them and to complete brief self-reports multiple times a week. Multi-modal behavioral sensing (i.e., physical activity, geospatial activity, speech frequency and duration) and device use data (i.e., call and text activity, app use) were captured automatically. Five individuals who experienced psychiatric hospitalization were selected and described for instructive purposes. Results Participants had unique digital indicators of their psychotic relapse. For some, self-reports provided clear and potentially actionable description of symptom exacerbation prior to hospitalization. Others had behavioral sensing data trends (e.g., shifts in geolocation patterns, declines in physical activity) or device use patterns (e.g., increased nighttime app use, discontinuation of all smartphone use) that reflected the changes they experienced more effectively. Conclusion Advancements in mobile technology are enabling collection of an abundance of information that until recently was largely inaccessible to clinical research and practice. However, remote monitoring and relapse detection is in its nascency. Development and evaluation of innovative data management, modeling, and signal-detection techniques that can identify changes within an individual over time (i.e. unique relapse signatures) will be essential if we are to capitalize on these data to improve treatment and prevention.
Early detection of mental health changes in individuals with serious mental illness is critical for effective intervention. CrossCheck is the first step towards the passive monitoring of mental health indicators in patients with schizophrenia and paves the way towards relapse prediction and early intervention. In this paper, we present initial results from an ongoing randomized control trial, where passive smartphone sensor data is collected from 21 outpatients with schizophrenia recently discharged from hospital over a period ranging from 2-8.5 months. Our results indicate that there are statistically significant associations between automatically tracked behavioral features related to sleep, mobility, conversations, smartphone usage and self-reported indicators of mental health in schizophrenia. Using these features we build inference models capable of accurately predicting aggregated scores of mental health indicators in schizophrenia with a mean error of 7.6% of the score range. Finally, we discuss results on the level of personalization that is needed to account for the known variations within people. We show that by leveraging knowledge from a population with schizophrenia, it is possible to train accurate personalized models that require fewer individual-specific data to quickly adapt to new users.
Background Schizophrenia spectrum disorders (SSDs) are chronic conditions, but the severity of symptomatic experiences and functional impairments vacillate over the course of illness. Developing unobtrusive remote monitoring systems to detect early warning signs of impending symptomatic relapses would allow clinicians to intervene before the patient’s condition worsens. Objective In this study, we aim to create the first models, exclusively using passive sensing data from a smartphone, to predict behavioral anomalies that could indicate early warning signs of a psychotic relapse. Methods Data used to train and test the models were collected during the CrossCheck study. Hourly features derived from smartphone passive sensing data were extracted from 60 patients with SSDs (42 nonrelapse and 18 relapse >1 time throughout the study) and used to train models and test performance. We trained 2 types of encoder-decoder neural network models and a clustering-based local outlier factor model to predict behavioral anomalies that occurred within the 30-day period before a participant's date of relapse (the near relapse period). Models were trained to recreate participant behavior on days of relative health (DRH, outside of the near relapse period), following which a threshold to the recreation error was applied to predict anomalies. The neural network model architecture and the percentage of relapse participant data used to train all models were varied. Results A total of 20,137 days of collected data were analyzed, with 726 days of data (0.037%) within any 30-day near relapse period. The best performing model used a fully connected neural network autoencoder architecture and achieved a median sensitivity of 0.25 (IQR 0.15-1.00) and specificity of 0.88 (IQR 0.14-0.96; a median 108% increase in behavioral anomalies near relapse). We conducted a post hoc analysis using the best performing model to identify behavioral features that had a medium-to-large effect (Cohen d>0.5) in distinguishing anomalies near relapse from DRH among 4 participants who relapsed multiple times throughout the study. Qualitative validation using clinical notes collected during the original CrossCheck study showed that the identified features from our analysis were presented to clinicians during relapse events. Conclusions Our proposed method predicted a higher rate of anomalies in patients with SSDs within the 30-day near relapse period and can be used to uncover individual-level behaviors that change before relapse. This approach will enable technologists and clinicians to build unobtrusive digital mental health tools that can predict incipient relapse in SSDs.
Schizophrenia is a severe and complex psychiatric disorder with heterogeneous and dynamic multi-dimensional symptoms. Behavioral rhythms, such as sleep rhythm, are usually disrupted in people with schizophrenia. As such, behavioral rhythm sensing with smartphones and machine learning can help better understand and predict their symptoms. Our goal is to predict fine-grained symptom changes with interpretable models. We computed rhythm-based features from 61 participants with 6,132 days of data and used multi-task learning to predict their ecological momentary assessment scores for 10 different symptom items. By taking into account both the similarities and differences between different participants and symptoms, our multi-task learning models perform statistically significantly better than the models trained with single-task learning for predicting patients’ individual symptom trajectories, such as feeling depressed, social, and calm and hearing voices. We also found different subtypes for each of the symptoms by applying unsupervised clustering to the feature weights in the models. Taken together, compared to the features used in the previous studies, our rhythm features not only improved models’ prediction accuracy but also provided better interpretability for how patients’ behavioral rhythms and the rhythms of their environments influence their symptom conditions. This will enable both the patients and clinicians to monitor how these factors affect a patient’s condition and how to mitigate the influence of these factors. As such, we envision that our solution allows early detection and early intervention before a patient’s condition starts deteriorating without requiring extra effort from patients and clinicians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.