BackgroundAlthough advanced-stage cervical cancer can benefit from current treatments, approximately 30% patients may fail after definitive treatment eventually. Therefore, exploring alternative molecular therapeutic approaches is imperatively needed for this disease. We have recently shown that activation of AMP-activated protein kinase (AMPK), a metabolic sensor, hampers cervical cancer cell growth through blocking the Wnt/β-catenin signaling activity. Here, we report that activated AMPK (p-AMPK) also inhibits cervical cancer cell growth by counteracting FOXM1 function.MethodsEffect of the activation of AMPK on FOXM1 expression was examined by hypoxia and glucose deprivation, as well as pharmacological AMPK activators such as A23187, AICAR and metformin. RT Q-PCR and Western blot analysis were employed to investigate the activities of AMPK, FOXM1 and AKT/FOXO3a signaling.ResultsConsistent with our previous findings, the activation of AMPK by either AMPK activators such as AICAR, A23187, metformin, glucose deprivation or hypoxia significantly inhibited the cervical cancer cell growth. Importantly, we found that activated AMPK activity was concomitantly associated with the reduction of both the mRNA and protein levels of FOXM1. Mechanistically, we showed that activated AMPK was able to reduce AKT mediated phosphorylation of p-FOXO3a (Ser253). Interestingly, activated AMPK could not cause any significant changes in FOXM1 in cervical cancer cells in which endogenous FOXO3a levels were knocked down using siRNAs, suggesting that FOXO3a is involved in the suppression of FOXM1.ConclusionTaken together, our results suggest the activated AMPK impedes cervical cancer cell growth through reducing the expression of FOXM1.
AMP-activated protein kinase (AMPK) is a critical energy-balancing sensor in the regulation of cellular metabolism in response to external stimuli. Emerging evidence has suggested that AMPK is a potential therapeutic target for human cancers. AICAR, one of the pharmacological AMPK activators, has been widely used to suppress cancer cell growth through activation of LKB1, an upstream kinase of AMPK. However, frequent mutations and deletions of LKB1 found in some cancer cells limit the application of AICAR as an efficient therapeutic drug. Here we show that an alternative pharmacological AMPK activator, A23187, was able to inhibit cervical cancer cell growth through activation of Ca2+/calmodulin-dependent protein kinase kinase β, another upstream kinase of AMPK. Using cervical cancer cell models, we found that HeLa (LKB1-deficient cell) responded less to the anti-proliferative effect exerted by AICAR treatment (p < 0.001) compared with CaSki and C41 (LKB1-expressing cells). Conversely, the anti-proliferative effect was increased significantly in HeLa but not in CaSki and C41 cells under treatment by A23187 (p < 0.001). Moreover, co-treatment of AICAR and A23187 was able to further enhance the inhibitory effect on cell growth of Hela, CaSki and C41 cells. Notably, both AICAR and A23187 exerted the anti-proliferative effect on cervical cancer cells by suppressing AMPK/mTOR signalling activity. These data suggest that A23187 could be an alternative potential therapeutic drug used for anti-proliferation in LKB1-deficient cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.