RNA seq analyses were performed in granulosa cells (GCs) collected from gonadotropin treated ESR2 mutant rats. Data obtained from a null mutant with Esr2 exon 3 deletion (∆3) and another DNA binding domain (DBD) mutant with exon 4 deletion (∆4) were compared to that of wildtype (WT) rats. The raw data were analyzed using CLC genomics workbench. High quality RNA-sequencing reads were aligned to the Rattus norvegicus genome. Differentially expressed genes in ∆3 or ∆4 Esr2-mutant GCs were identified based on the following criteria: FDR p-Value ≤0.05 and an absolute fold change of 2. Fewer differentially expressed genes were identified in ∆3 compared to the ∆4 mutant group. As both mutant groups demonstrated a common phenotype of ovulation failure, differentially expressed genes common to both in ∆3 and ∆4 mutant rats were emphasized and further analyzed in the companion article “ESR2 regulates granulosa cell genes essential for follicle maturation and ovulation” [1].
Estrogens are traditionally considered to be female sex steroid hormones and most of the studies examining estrogen regulation of metabolic function in the liver have been conducted in females. However, the liver expresses high levels of estrogen receptor alpha (ESR1) in both males and females, which mediates the hepatic response to estrogens. In this data article, we investigated whether metabolic disorders in Esr1 knockout (Esr1-/-) male rats were linked with loss of transcriptional regulation by ESR1 in liver. To identify the ESR1 regulated genes in the mutant liver, RNA-sequencing was performed on liver RNAs purified from young male rats. The raw data were analyzed using the CLC Genomics Workbench and high-quality RNA-sequencing reads were aligned to the Rattus norvegicus genome. Transcriptome data obtained from Esr1-/- liver RNAs were compared to that of wild type rats. Based on an absolute fold change of 2 with a p-value ≤ 0.05, a total of 618 differentially expressed genes were identified in the Esr1-/- male liver. Pathway analyses demonstrated that the majority of differentially expressed genes are regulators of carbohydrate and lipid metabolism in the liver. These differentially expressed genes and their potential roles were further examined in a companion manuscript, “Disruption of ESR1 alters the expression of genes regulating hepatic lipid and carbohydrate metabolism in male rats” (Khristi et al., 2018).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.