In summary, these systems demonstrated excellent performance. Furthermore, each system has benefits which will ensure they will all have a niche in a clinical laboratory.
Strain-associated assay performance variation is known to occur with other Flu test methods; hence, it is not surprising that such variation would be observed with molecular tests. Careful monitoring and reporting for strain-associated variances are warranted for all test methods.
bClostridium difficile-associated diarrhea is a well-recognized complication of antibiotic use. Historically, diagnosing C. difficile has been difficult, as antigen assays are insensitive and culture-based methods require several days to yield results. Nucleic acid amplification tests (NAATs) are quickly becoming the standard of care. We compared the performance of two automated investigational/research use only (IUO/RUO) NAATs for the detection of C. difficile toxin genes, the IMDx C. difficile for Abbott m2000 Assay (IMDx) and the BD Max Cdiff Assay (Max). A prospective analysis of 111 stool specimens received in the laboratory for C. difficile testing by the laboratory's test of record (TOR), the BD GeneOhm Cdiff Assay, and a retrospective analysis of 88 specimens previously determined to be positive for C. difficile were included in the study. One prospective specimen was excluded due to loss to follow-up discrepancy analysis. Of the remaining 198 specimens, 90 were positive by all three methods, 9 were positive by TOR and Max, and 3 were positive by TOR only. One negative specimen was initially inhibitory by Max. The remaining 95 specimens were negative by all methods. Toxigenic C. difficile culture was performed on the 12 discrepant samples. True C. difficile-positive status was defined as either positive by all three amplification assays or positive by toxigenic culture. Based on this definition, the sensitivity and specificity were 96.9% and 95% for Max and 92.8% and 100% for IMDx. In summary, both highly automated systems demonstrated excellent performance, and each has individual benefits, which will ensure that they will both have a niche in clinical laboratories.
Background: Nucleic acid amplification tests (NAATs), such as PCR, are preferred for respiratory virus testing, due to superior diagnostic accuracy and faster turnaround time. Panther Fusion® Respiratory Assays (Fusion), which includes FluA/B/RSV (FFABR), Paraflu and AdV/hMPV/RV, offers a modular approach to syndromic testing on a fully automated platform while improving gene targets and expanding the test menu. Objectives and study design: We evaluated Fusion using 275 consecutive nasopharyngeal specimens previously used in an analysis of five PCRs, as well as 225 archived specimens. Results: Of the combined 500 specimens, 134 were positive for influenza A (FluA), 54 for FluB, 65 for RSV, 64 for parainfluenza (PIV), 24 for adenovirus (AdV), 21 for humanmetapneumovirus (hMPV), and 40 for rhinovirus (RV) with Fusion. Of the positive samples Fusion correlated with historical results for all but one, despite multiple freeze-thaws cycles of this collection. Fusion was positive for an additional 33 samples, including 11 FluAs, 7 RSVs, 3 PIV3s, 3 AdV, 6 hMPV and 3 RVs. These samples were retested with corresponding Prodesse (Pro) assays using quadruple sample volume. This resolver test confirmed Fusion results for an additional 4 FluAs, 4 RSVs, 1 PIV3 and 3 AdVs. The sensitivity and specificity ranges of Fusion were 99-100% and 98-100%. Limit of detection (LOD) analyses were performed on a variety of Flu isolates. The LODs ranged from 2.69 to 2.99 log copies/ml and demonstrated superior LOD as compared to previously published data for some assays or to concurrent analyses with two new commercial tests.
Nucleic acid amplification tests, such as PCR, are the method of choice for respiratory virus testing, due to their superior diagnostic accuracy and fast turnaround time. The Panther Fusion (Fusion; Hologic) system has an array of highly sensitive in vitro diagnostic (IVD) real-time PCR assays for respiratory viruses, including an assay for influenza A (FluA) virus, influenza B (FluB) virus, and respiratory syncytial virus (RSV) (FFABR assay). The Fusion system has Open Access functionality to perform laboratory-developed tests (LDTs) alongside IVD assays. We developed two LDTs for FluA virus strain typing on the Panther Fusion instrument, enabling side-by-side testing with the FFABR assay. The LDT-FAST assay uses proprietary primers and probes designed by Hologic for the Prodesse ProFAST+ (PFAST) assay. The exWHO-FAST assay is an expanded redesign of the WHO-recommended reverse transcriptase PCRs (RT-PCRs). To evaluate the performance of these two LDTs, 110 FluA virus-positive samples were tested. Of these, 104 had been subtyped previously; 54 were H3, 46 were 09H1, and 4 were fsH1. All were appropriately subtyped by both LDTs. Of the untyped FluA virus samples, three were subtyped as H3 by both LDTs and two were subtyped as H3 by the LDT-FAST assay only. The sample not subtyped by either LDT was retested with the FFABR assay and was now negative. Limit-of-detection (LOD) analyses were performed with five FluA virus strains. The LDT-FAST LODs were similar to the FFABR assay LODs, while the exWHO-FAST LODs were higher for two H3N2 strains, findings that were explained by analysis of primer/probe homology. In conclusion, either FluA virus typing assay would be a valuable complement to the Panther Fusion respiratory menu given the performance of these LDTs, the system’s full automation, and the ability to split eluates for both IVD and LDT testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.