Kurs adalah sebuah nilai mata uang suatu negara terhadap mata uang lain. Oleh karena itu, kurs memiliki dua komponen utama yaitu mata uang domestik, dan mata uang asing. Mata uang asing yang sering digunakan sebagai patokan nilai tukar adalah US Dollar. Di berbagai negara termasuk Indonesia, nilai tukar mata uang terhadap US Dollar sangat mempengaruhi perekonomian yang berjalan, terutama harga jual suatu barang. Selain itu, nilai tukar mata uang juga berpengaruh terhadap keputusan seseorang untuk berinvestasi, baik saham, emas, atau yang lain. Penelitian ini mencoba memprediksi nilai tukar rupiah terhadap US Dollar dengan memanfaatkan aplikasi RapidMiner. Aplikasi tersebut merupakan aplikasi freeware yang didalamnya terdapat berbagai macam metode pengolahan data yang siap untuk digunakan secara mudah. Penelitian ini menerapkan metode linear regression yang terdapat pada aplikasi RapidMiner. Metode tersebut akan mengolah data-data yang sudah ada sebelumnya untuk membentuk suatu persamaan yang akan digunakan untuk prediksi nilai tukar rupiah terhadap US Dollar. Atribut yang digunakan untuk melakukan prediksi adalah nilai pembukaan, perubahan, tertinggi, dan terendah dari nilai tukar rupiah terhadap US Dollar. Data yang digunakan pada penelitian ini berasal dari situs investing.com. Dari hasil pengujian yang dilakukan, didapatkan akurasi metode linear regression sebesar 95% dengan nilai threshold adalah 30 rupiah. Selain itu, nilai root mean squared error yang didapatkan sebesar 14,951.
Tugas Akhir (TA) adalah sebuah karya ilmiah yang harus dibuat oleh mahasiswa jurusan Teknik Informatika, Universitas Surabaya sebagai salah satu syarat kelulusan. Dalam mengajukan topik TA, mahasiswa wajib membuat dan mengumpulkan proposal TA tersebut. Setelah itu, ketua jurusan akan menentukan calon dosen pembimbing, dosen reviewer 1, dan dosen reviewer 2 sesuai dengan kompetensi untuk proposal tersebut. Dalam proses pengajuan proposal tersebut, terdapat beberapa masalah yang muncul, yakni adanya kemungkinan kesalahan penentuan pembimbing karena proses penentuannya berdasarkan pengetahuan pribadi dari ketua jurusan, kesulitan memantau perkembangan proses pengajuan proposal, dan kesulitan untuk melakukan pemerataan pembimbing TA. Untuk mengatasi masalah tersebut, dibuatlah sistem untuk melayani administrasi pengajuan topik TA beserta penentuan pembimbing. Proses penentuan pembimbing akan menggunakan metode Dice Coefficient. Dari hasil pengujian sistem dengan metode K-Fold Cross Validation dengan nilai k = 100 untuk 1000 data TA yang ada, didapatkan nilai akurasi sistem sebesar 36,25%. Apabila diambil 100 data TA yang memiliki dosen pembimbing yang ideal, sistem memberikan nilai akurasi yang lebih baik yaitu sebesar 45,5%.
The development of e-commerce is starting to change people's lifestyles, not least the people of Indonesia. The existence of e-commerce is very helpful user in buying and selling products. There are many e-commerce that can be found today. Some of the famous e-commerce in Indonesia are Bukalapak, Lazada, and Blibli. A large number of existing ecommerce makes users, especially buyers, have difficulty when looking for products at the cheapest price. This happens because each e-commerce offers different prices for the same product. This research aims to make the cheapest product search system in Bukalapak, Lazada, and Blibli using K-Means algorithm. The results of experiments showed that K-Means algorithm can be used to classify product data from Bukalapak, Lazada, and Blibli well. The results of the clustering process can also help for searching the cheapest products from the three e-commerce becomes faster. However, the number of clusters used will affect the effectiveness of the search process on the system.
Program Information Technology di Jurusan Teknik Informatika, Universitas Surabaya, merupakan salah satu program yang menggunakan bahasa Inggris sebagai pengantar pada saat perkuliahan berlangsung. Akan tetapi, kurangnya informasi mengenai Program Information Technology menyebabkan kurangnya minat calon mahasiswa terhadap program tersebut. Oleh karena itu, penelitian ini bertujuan untuk membuat sebuah aplikasi chatbot yang dapat membantu user untuk memperoleh informasi-informasi terkait dengan Program Information Technology pada Jurusan Teknik Informatika, Universitas Surabaya. Chatbot yang dibangun hanya akan memproses pertanyaan dengan bahasa Inggris saja. Chatbot yang dibuat pada penelitian ini menggunakan pendekatan Natural Language Processing (NLP) untuk memproses pertanyaan yang disampaikan user dan untuk mendapatkan kata kunci dari informasi yang diinginkan user. Sistem akan melakukan pencarian informasi pada kamus informasi yang ada. Apabila informasi tidak ditemukan, maka sistem akan melakukan proses crawling untuk memperoleh informasi yang dibutuhkan user. Pada penelitian ini, validasi sistem dilakukan dengan dua metode yaitu cross validation dan user validation. Berdasarkan validasi dengan metode cross validation didapatkan akurasi sebesar 83,33%. User validation dilakukan dengan cara meminta 10 user untuk melakukan uji coba sistem dan didapatkan akurasi sebesar 76%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.