Background:The aim of this study was to elucidate the prognostic impact of putative cancer stem cell markers CD133, CD166, CD44s, EpCAM, and aldehyde dehydrogenase-1 (ALDH1) in colorectal cancer.Methods:A tissue microarray of 1420 primary colorectal cancers and 57 normal mucosa samples was immunostained for CD133, CD166, CD44s, EpCAM, and ALDH1 in addition to 101 corresponding whole tissue sections. Invasive potential of three colorectal cancer cell lines was tested.Results:Differences between normal tissue and cancer were observed for all markers (P<0.001). Loss of membranous CD166 and CD44s were linked to higher pT (P=0.002, P=0.014), pN (P=0.004, P=0.002), an infiltrating growth pattern (P<0.001, P=0.002), and worse survival (P=0.015, P=0.019) in univariate analysis only. Loss of membranous EpCAM expression was also linked to higher pN (P=0.023) and infiltrating growth pattern (P=0.005). The CD44s, CD166, and EpCAM expression were lost towards the invasive front. The CD44−/CD166− cells from three colorectal cancer cell lines exhibited significantly higher invasive potential in vitro than their positive counterparts.Conclusions:Loss, rather than overexpression, of membranous CD44s, CD166, and EpCAM is linked to tumour progression. This supports the notion that the membranous evaluation of these proteins assessed by immunohistochemistry may be representative of their cell adhesion rather than their intra-cellular functions.
Polycomb group (PcG) proteins function as multiprotein complexes and are part of a gene regulatory mechanism that determines cell fate during normal and pathogenic development. Several studies have implicated the deregulation of different PcG proteins in neoplastic progression. Pancreatic ductal adenocarcinoma is an aggressive neoplasm that follows a multistep model of progression through precursor lesions called pancreatic intraepithelial neoplasia (PanIN). Aim of this study was to investigate the role of PcG protein CBX7 in pancreatic carcinogenesis and to evaluate its possible diagnostic and prognostic significance. We analysed by immunohistochemistry the expression of CBX7 in 210 ductal pancreatic adenocarcinomas from resection specimens, combined on a tissue microarray (TMA) including additional 40 PanIN cases and 40 normal controls. The results were evaluated by using receiver operating characteristic (ROC) curve analysis for the selection of cut-off scores and correlated to the clinicopathological parameters of the tumours and the outcome of the patients. Expression of E-cadherin, a protein positively regulated by CBX7, was also assessed. A significantly differential, and progressively decreasing CBX7 protein expression was found between normal pancreatic tissue, PanINs and invasive ductal adenocarcinoma. Loss of CBX7 expression was associated with increasing malignancy grade in pancreatic adenocarcinoma, whereas the maintenance of CBX7 expression showed a trend toward a longer survival. Moreover, loss of E-cadherin expression was associated with loss of CBX7 and with a trend towards worse patient survival. These results suggest that CBX7 plays a role in pancreatic carcinogenesis and that its loss of expression correlates to a more aggressive phenotype.
Liver organogenesis and cancerogenesis share common mechanisms. HOX genes control normal development, primary cellular processes and are characterized by a unique genomic network organization. Less is known about the involvement of HOX genes with liver cancerogenesis. The comparison of the HOX gene network expression between nontumorous livers and hepatocellular carcinomas (HCCs) highlights significant differences in the locus A HOX genes, located on chromosome 7, with a consistent overexpression of HOXA13 mRNA thus validating this gene deregulation as a feature of HCC. HOXA13 is a determinant of gut primordia and posterior body structures. Transcriptome analysis of HCC/nontumorous liver mRNAs, selected on the basis of HOXA13 overexpression, recognizes a set of deregulated genes. The matching of these genes with previously reported HCC transcriptome analysis identifies cell-cycle and nuclear pore-related HCC phenotype displaying poor prognosis. HOXA13 and HOXA7 homeoproteins share a consensus sequence that physically links eIF4E nuclear bodies acting on the export of specific mRNAs (c-myc, FGF-2, vascular endothelial growth factor (VEGF), ornithine decarboxylase (ODC) and cyclin D1). We report the protein-protein interaction between HOXA13 and eIF4E in liver cancer cells and the deregulation of eIF4E mRNA and protein in cell cycle/nuclear pore HCC group phenotype and in T4 stage HCCs, respectively. Thus, transcriptional and post-transcriptional HOXA13 deregulation is involved in HCC possibly through the mRNA nuclear export of eIF4E-dependent transcripts.
We have explored MICA/B expression and its relationship with innate inflammatory infiltrate in renal cell carcinoma (RCC). The expression of MICA/B, CD16, CD56, and CD68 in 140 RCC lesions contained in a tissue microarray (TMA) was investigated by immunohistochemistry. MICA/B gene and protein expressions in Caki-1 cells were analyzed by reverse transcription-polymerase chain reaction and flow cytometry, respectively. Natural killer (NK) cells were studied by flow cytometry. All the RCC lesions (n = 140) were MICA/B-positive. MICA/B was mainly expressed in the cytoplasm of tumor cells, whereas stromal cells were negative. Renal cell carcinoma lesions showed low NK cell infiltration, although they were rich in CD16(+)CD56(-) cells, strongly resembling macrophages. CD16(+) macrophage infiltration was more frequently detectable in metastatic lesions compared with primary tumors (P = .0223) and was associated with poor RCC differentiation (P = .007). To investigate mechanisms potentially underlying the lack of NK cells infiltration into MICA/B-positive RCC lesions, we used Caki-1 RCC cells. Caki-1 expressed MICA and MICB genes. However, MICA protein was not detectable in Caki-1 cells, whereas MICB protein was detectable in their cytoplasm and on the cell membrane. Coculture of peripheral blood mononuclear cells with Caki-1, K562, HCT116, respectively, resulted in CD56(+)CD16(+) NK cells deletion without affecting CD56(+)/CD16(-) NK subset and immature NK cells generated in vitro from CD34(+) cells. Natural killer cell apoptosis seemed to be preferentially triggered by cancer cells because HLA-A0201(+) NK cells were only marginally affected by allogeneic HLA-A0201(-) peripheral blood mononuclear cells. Caki-1 cell-mediated NK cell apoptosis was reduced by an anti-beta(2)-integrin (CD18) monoclonal antibody but was NKG2D-, granule exocytosis-, and caspase-independent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.