The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.
Interpreting variants, especially noncoding ones, in the increasing
number of personal genomes is challenging. We used patterns of polymorphisms in
functionally annotated regions in 1092 humans to identify deleterious variants;
then we experimentally validated candidates. We analyzed both coding and
noncoding regions, with the former corroborating the latter. We found regions
particularly sensitive to mutations (“ultrasensitive”) and
variants that are disruptive because of mechanistic effects on
transcription-factor binding (that is, “motif-breakers”). We also
found variants in regions with higher network centrality tend to be deleterious.
Insertions and deletions followed a similar pattern to single-nucleotide
variants, with some notable exceptions (e.g., certain deletions and enhancers).
On the basis of these patterns, we developed a computational tool (FunSeq),
whose application to ~90 cancer genomes reveals nearly a hundred
candidate noncoding drivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.