Background
The ventilator works mechanically on the lung parenchyma. The authors set out to obtain the proof of concept that ventilator-induced lung injury (VILI) depends on the mechanical power applied to the lung.
Methods
Mechanical power was defined as the function of transpulmonary pressure, tidal volume (TV), and respiratory rate. Three piglets were ventilated with a mechanical power known to be lethal (TV, 38 ml/kg; plateau pressure, 27 cm H2O; and respiratory rate, 15 breaths/min). Other groups (three piglets each) were ventilated with the same TV per kilogram and transpulmonary pressure but at the respiratory rates of 12, 9, 6, and 3 breaths/min. The authors identified a mechanical power threshold for VILI and did nine additional experiments at the respiratory rate of 35 breaths/min and mechanical power below (TV 11 ml/kg) and above (TV 22 ml/kg) the threshold.
Results
In the 15 experiments to detect the threshold for VILI, up to a mechanical power of approximately 12 J/min (respiratory rate, 9 breaths/min), the computed tomography scans showed mostly isolated densities, whereas at the mechanical power above approximately 12 J/min, all piglets developed whole-lung edema. In the nine confirmatory experiments, the five piglets ventilated above the power threshold developed VILI, but the four piglets ventilated below did not. By grouping all 24 piglets, the authors found a significant relationship between the mechanical power applied to the lung and the increase in lung weight (r2 = 0.41, P = 0.001) and lung elastance (r2 = 0.33, P < 0.01) and decrease in Pao2/Fio2 (r2 = 0.40, P < 0.001) at the end of the study.
Conclusion
In piglets, VILI develops if a mechanical power threshold is exceeded.
Most of the computed tomography scan new densities developed in nonhomogeneous lung regions. The damage in this model was primarily located in the interstitial space, causing alveolar collapse and consequent high recruitability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.