Amino-acid sequences derived from complementary DNAs encoding the alpha- and beta-subunits of the GABA/benzodiazepine receptor from bovine brain show homology with other ligand-gated receptor subunits, suggesting that there is a super-family of ion-channel-containing receptors. Co-expression of the in vitro-generated alpha-subunit and beta-subunit RNAs in Xenopus oocytes produces a functional receptor and ion channel with the pharmacological properties characteristic of the GABAA receptor.
Social and solitary feeding in natural Caenorhabditis elegans isolates are associated with two alleles of the orphan G-protein-coupled receptor (GPCR) NPR-1: social feeders contain NPR-1 215F, whereas solitary feeders contain NPR-1 215V. Here we identify FMRFamide-related neuropeptides (FaRPs) encoded by the flp-18 and flp-21 genes as NPR-1 ligands and show that these peptides can differentially activate the NPR-1 215F and NPR-1 215V receptors. Multicopy overexpression of flp-21 transformed wild social animals into solitary feeders. Conversely, a flp-21 deletion partially phenocopied the npr-1(null) phenotype, which is consistent with NPR-1 activation by FLP-21 in vivo but also implicates other ligands for NPR-1. Phylogenetic studies indicate that the dominant npr-1 215V allele likely arose from an ancestral npr-1 215F gene in C. elegans. Our data suggest a model in which solitary feeding evolved in an ancestral social strain of C. elegans by a gain-of-function mutation that modified the response of NPR-1 to FLP-18 and FLP-21 ligands.
Nongenomic response pathways mediate many of the rapid actions of steroid hormones, but the mechanisms underlying such responses remain controversial. In some cases, cell-surface expression of classical nuclear steroid receptors has been suggested to mediate these effects, but, in a few instances, specific G-protein-coupled receptors (GPCRs) have been reported to be responsible. Here, we describe the activation of a novel, neuronally expressed Drosophila GPCR by the insect ecdysteroids ecdysone (E) and 20-hydroxyecdysone (20E). This is the first report of an identified insect GPCR interacting with steroids. The Drosophila melanogaster dopamine/ecdysteroid receptor (DmDopEcR) shows sequence homology with vertebrate -adrenergic receptors and is activated by dopamine (DA) to increase cAMP levels and to activate the phosphoinositide 3-kinase pathway. Conversely, E and 20E show high affinity for the receptor in binding studies and can inhibit the effects of DA, as well as coupling the receptor to a rapid activation of the mitogen-activated protein kinase pathway. The receptor may thus represent the Drosophila homolog of the vertebrate "␥-adrenergic receptors," which are responsible for the modulation of various activities in brain, blood vessels, and pancreas. Thus, DmDopEcR can function as a cell-surface GPCR that may be responsible for some of the rapid, nongenomic actions of ecdysteroids, during both development and signaling in the mature adult nervous system.
A cDNA clone is described that encodes a novel G-protein-coupled dopamine receptor (DopR99B) expressed in Drosophila heads. The DopR99B receptor maps to 99B3-5, close to the position of the octopamine/tyramine receptor gene at 99A10-B1, suggesting that the two may be related through a gene duplication. Agonist stimulation of DopR99B receptors expressed in Xenopus oocytes increased intracellular Ca2+ levels monitored as changes in an endogenous inward Ca2+-dependent chloride current. In addition to initiating this intracellular Ca2+ signal, stimulation of DopR99B increased cAMP levels. The rank order of potency of agonists in stimulating the chloride current is: dopamine > norepinephrine > epinephrine > tyramine. Octopamine and 5-hydroxytryptamine are not active (< 100 microM). This pharmacological profile plus the second-messenger coupling pattern suggest that the DopR99B receptor is a D1-like dopamine receptor. However, the hydrophobic core region of the DopR99B receptor shows almost equal amino acid sequence identity (40-48%) with vertebrate serotonergic, alpha 1- and beta-adrenergic, and D1-like and D2-like dopaminergic receptors. Thus, this Drosophila receptor defines a novel structural class of dopamine receptors. Because DopR99B is the second dopamine receptor cloned from Drosophila, this work establishes dopamine receptor diversity in a system amenable to genetic dissection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.