The goal of this work was to test a patented pruning harvester and a mobile pelleting system specifically designed for the vineyard agripellet chain. Biomass was characterized before and after storage and after the pelleting stage. The performance, the fuel consumption, and the work quality of the harvester were assessed together with the productivity and the power consumption of the mobile pelleting system. Production costs of pellet were estimated for the whole logistic chain, considering two scenarios: Storage and pelleting directly at the farm site or at a dedicated location at variable distance from the fields. For comparison, the direct production of chips without pelleting was considered. Results indicate that harvester performance was quite good and comparable with commercial solutions; the chips produced exhibited excellent storage performance, allowing direct pelleting without forced drying; the pellet quality was good comparable with that produced from forestry biomass. From an economic point of view, in-field pelleting was the most cost-effective solution, with a good margin of profit up to 57€ t−1; on the other hand, when transport to an intermediate storage center is necessary, profit margin reduces gradually and fades off at an average 50 km distance from the fields.
Pruning residues could represent an important biomass resources for energy production. Only in Italy it has been estimated that an annual quantity of biomass of over 2600 kt of dry matter could be obtained from olive residues. Several machines developed for pruning harvesting are available in the market, most of which are tractor-driven, while limited knowledge is available on performance, quality of work and costs of harvesting logistics based on stationary chippers. The aim of the present paper is to analyze machine performance of a forestry stationary chipper applied to pruning harvesting for what concerns work productivity, quality of the comminuted product and harvesting operating costs. This system is actually applied by Fiusis Company, an Italian enterprise which manages a biomass power plant exclusively powered by olive trees’ pruning residues, and it has never been analyzed in literature. The results obtained showed consistent work productivity, which resulted the highest ever found in olive pruning harvesting systems and equal to 5.23 ± 0.81 tdm·h−1. This high work productivity allowed also to obtain a little economic gain from a matter, which is actually considered a problem for olive groves’ owners and not a potential source of income. In particular, the use of a stationary chipper seemed very efficient in olive groves with a consistent amount of wooden residues to be processed and with big branches not harvestable by the most common towed pruning harvester. In addition, the stationary chipper has the advantage of avoiding the preliminary raking operation, which results in reduced costs for the farmer.
This work, developed under the EuroPruning Project, aims to look at relations between pruning biomass production and several factors related both to crop species and management. The aim is to find out mathematical relations that allow improvement of the biomass potential assessment. This is generally calculated using biomass production ratios. These ratios are variable due to the influence of several aspects. On the one hand there are crop characteristics-such as species, cultivar, and age-and on the other, crop management, which is often associated to local habits and conditions such as the training system, planting pattern, density, pruning methods, irrigation and climate. This work has been produced by gathering data from literature reviews and surveying. The subset of Italian records in the EuroPruning database consists of 70 records. Each record contains the biomass production ratio and eight agronomic variables. Additionally, a set of six climatic and agro-climatic groups of variables (in total 28 variables) have been added to each record. Moderate to good correlations have been found, especially with few climatic factors. As a result, two regression models are proposed for the evaluation of the vineyard and olive tree pruning biomass ratios for Italy, and applied to assess pruning biomass potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.