Coronavirus disease 2019 (COVID-19) has become pandemic very rapidly at the beginning of 2020. In the rush to possible therapeutic options, probiotics administration has been proposed mainly based on indirect observation. Some evidence of COVID-19 effects on intestinal microbiota dysbiosis has been shown and probiotics have been considered for their efficacy in the management of respiratory tract viral infections. These observations could be reinforced by the more and more evident existence of a lung-gut axis, suggesting the modulation of gut microbiota among the approaches to the COVID-19 prevention and treatment. As different possible roles of probiotics in this extremely severe illness have been contemplated, the aim of this work is to collect all the currently available information related to this topic, providing a starting point for future studies focussing on it.
Lactic acid bacteria (LAB) are involved in producing a considerable number of fermented products consumed worldwide. Many of those LAB fermented foods are recognized as beneficial for human health due to probiotic LAB or their metabolites produced during food fermentation or after food digestion. In this review, we aim to gather and discuss available information on the health-related effects of LAB-fermented foods. In particular, we focused on the most widely consumed LAB-fermented foods such as yoghurt, kefir, cheese, and plant-based products such as sauerkrauts and kimchi.
The increasing competition within the food industry sector makes the requisite of innovation in processes and products essential, leading to focus the interest on the application of new processing technologies including high pressure homogenization (HPH) and ultra high pressure homogenization (UHPH). In this context, the present research aimed at evaluating the effects of two UHPH treatments performed at 200 MPa for 2 and 3 cycles on quality and functionality of organic kiwifruit juice stored at three different temperatures, i.e., 5, 15, and 25°C. The results showed that only the treatment performed at 200 MPa for 3 cycles was able to significantly increase the shelf-life of organic kiwifruit juices when stored at refrigeration temperature, avoiding also phase separation that occurred in the sample treated at 0.1 MPa (control) after 20 days of refrigerated storage. The obtained data showed also that the highest applied pressure was able to increase some quality parameters of the juice such as viscosity and luminosity (L ∗ ) and increased the availability of total phenol content consequently enhancing the juice total antioxidant activity. The application of a treatment at 200 MPa for 3 cycles allowed to obtain a stable kiwifruit juice for more than 40 days under refrigerated storage. A challenge to implement this technology in food process as full alternative to thermal treatment could be represented by the adoption of pressure level up to 400 MPa followed by the packaging in aseptic conditions.
Plant derived beverages have recently gained consumers’ interest, particularly due to their intrinsic functional properties. They can also act as non-dairy carriers for probiotics and prebiotics, meeting the needs of lactose allergic/intolerant people and vegans. Direct fermentation of fruit and vegetables juices by probiotic lactic acid bacteria could be a tool to increase safety, shelf-life, nutrients bioavailability and to improve sensorial features of plant derived juices. This study aims to screen wild Lactobacillus casei-group strains isolated from dairy matrices for probiotic features, such as acid and bile salts resistance, and test them for the potentiality to ferment celery and orange juices. Strains’ ability to produce exopolysaccharides (EPS) in situ is also checked. These evaluations were performed for the first time in fruit and vegetables matrices by means of an impedometric analysis, recently shown to be a suitable and rapid method to measure microorganisms’ growth, acidification performances and EPS production. This study allowed the selection of three potentially probiotic L. casei-group wild strains able to ferment fruit and vegetable juices and also producing EPS. These strains with three-in-one abilities could be used to produce new functional fermented plant derived juices.
Microbial contamination may represent a loss of money for wine producers as several defects can arise due to a microorganism’s growth during storage. The aim of this study was to implement a bioluminescence assay protocol to rapidly and simultaneously detect bacteria and yeasts in wines. Different wines samples were deliberately contaminated with bacteria and yeasts at different concentrations and filtered through two serial filters with decreasing mesh to separate bacteria and yeasts. These were resuscitated over 24 h on selective liquid media and analyzed by bioluminescence assay. ATP measurements discriminated the presence of yeasts and bacteria in artificially contaminated wine samples down to 50 CFU/L of yeasts and 1000 CFU/L of bacteria. The developed protocol allowed to detect, rapidly (24 h) and simultaneously, bacteria and yeasts in different types of wines. This would be of great interest for industries, for which an early detection and discrimination of microbial contaminants would help in the decision-making process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.