Background: Hyalinizing trabecular tumor (HTT) is a rare thyroid neoplasm with a characteristic trabecular growth pattern and hyalinization. This lesion has been the subject of long-term controversy surrounding its genetic mechanisms, relationship to papillary thyroid carcinoma (PTC), and malignant potential. Due to the presence of nuclear features shared with PTC, HTT frequently contributes to a false-positive cytology, which hampers patient management. The goal of this study was to apply genome-wide sequencing analyses to elucidate the genetic mechanisms of HTT and its relationship to PTC. Methods: Whole-exome, RNA-Seq, and targeted next-generation sequencing analyses were performed to discover and characterize driver mutations in HTT. RNA-Seq results were used for pathway analysis. Tissue expression of GLIS3 and other proteins was detected by immunohistochemistry. The prevalence of GLIS fusions was studied in 17 tumors initially diagnosed as HTT, 220 PTC, and 10,165 thyroid fine-needle aspiration samples. Results: Using whole-exome and RNA-Seq analyses of the initial three HTT, no known thyroid tumor mutations were identified, while in-frame gene fusion between PAX8 exon 2 and GLIS3 exon 3 was detected in all tumors. Further analysis identified PAX8-GLIS3 in 13/14 (93%) and PAX8-GLIS1 in 1/14 (7%) of HTT confirmed after blind pathology review. The fusions were validated by Sanger sequencing and FISH. The fusions resulted in overexpression of the 3¢-portion of GLIS3 and GLIS1 mRNA containing intact DNA-binding domains of these transcription factors and upregulation of extracellular matrix genes including collagen IV. Immunohistochemistry confirmed upregulation and deposition of collagen IV and pan-collagen in HTT. The analysis of 220 PTC revealed no PAX8-GLIS3 and one PAX8-GLIS1 fusion. PAX8-GLIS3 was prospectively identified in 8/10,165 (0.1%) indeterminate cytology fineneedle aspiration samples; 5/5 resected fusion-positive nodules were HTT on surgical pathology. Conclusions: This study demonstrates that GLIS rearrangements, particularly PAX8-GLIS3, are highly prevalent in HTT but not in PTC. The fusions lead to overexpression of GLIS, upregulation of extracellular matrix genes, and deposition of collagens, which is a characteristic histopathologic feature of HTT. Due to unique genetic mechanisms and an indolent behavior, it is proposed to rename this tumor as ''GLIS-rearranged hyalinizing trabecular adenoma.''
BACKGROUND. DICER1 is the only miRNA biogenesis component associated with an inherited tumor syndrome, featuring multinodular goiter (MNG) and rare pediatric-onset lesions. Other susceptibility genes for familial forms of MNG likely exist. METHODS. Whole-exome sequencing of a kindred with early-onset MNG and schwannomatosis was followed by investigation of germline pathogenic variants that fully segregated with the disease. Genome-wide analyses were performed on 13 tissue samples from familial and nonfamilial DGCR8-E518K-positive tumors, including MNG, schwannomas, papillary thyroid cancers (PTCs), and Wilms tumors. miRNA profiles of 4 tissue types were compared, and sequencing of miRNA, pre-miRNA, and mRNA was performed in a subset of 9 schwannomas, 4 of which harbor DGCR8-E518K. RESULTS. We identified c.1552G>A;p.E518K in DGCR8, a microprocessor component located in 22q, in the kindred. The variant identified is a somatic hotspot in Wilms tumors and has been identified in 2 PTCs. Copy number loss of chromosome 22q, leading to loss of heterozygosity at the DGCR8 locus, was found in all 13 samples harboring c.1552G>A;p. E518K. miRNA profiling of PTCs, MNG, schwannomas, and Wilms tumors revealed a common profile among E518K hemizygous tumors. In vitro cleavage demonstrated improper processing of pre-miRNA by DGCR8-E518K. MicroRNA and RNA profiling show that this variant disrupts precursor microRNA production, impacting populations of canonical microRNAs and mirtrons. CONCLUSION. We identified DGCR8 as the cause of an unreported autosomal dominant mendelian tumor susceptibility syndrome: familial multinodular goiter with schwannomatosis.
Context DICER1 mutations are found in multinodular goiter and differentiated thyroid carcinoma in children, and can be a manifestation of DICER1 syndrome, but the prevalence of DICER1 mutations and their significance in adult-onset thyroid nodules is unknown. Objective Determine 1) the prevalence of DICER1 hotspot mutations in thyroid nodules; 2) the frequency of a second DICER1 pathogenic variant in thyroid nodules with DICER1 hotspot mutations; 3) the prevalence of other thyroid cancer driver mutations in thyroid nodules with and without DICER1 hotspot mutations. Design Population-based study of 14,993 consecutive fine needle aspiration biopsies of thyroid nodules evaluated by ThyroSeq v3. From 214 DICER1 hotspot-positive cases, we selected 61, matched to DICER1 hotspot-negative nodules. We performed full sequencing of all exons and exon-intron boundaries of DICER1. Setting Commercial and university-based laboratories in the United States and Canada Results Among 14,993 thyroid nodules, 214 (1.4%) revealed a DICER1 hotspot mutation. A second pathogenic/likely pathogenic variant in DICER1 was found in 45/59 (76%) DICER1 hotspot-positive nodules studied while no other DICER1 variant was identified in the DICER1 hotspot-negative group by full DICER1 sequencing. Other alterations in thyroid-related genes were significantly more frequent in DICER1 hotspot-negative nodules (32/61) than in DICER1 hotspot-positive nodules (4/59) (p<0.0001). Conclusions DICER1 alterations occur in a proportion of adult thyroid nodules and appear mutually exclusive with alterations in other thyroid cancer-related genes. DICER1 hotspot mutations occur with a second hit in most cases and could suggest occult DICER1 syndrome in adults with thyroid nodules.
ALK fusions are found in various tumors, including thyroid cancer, and serve as a diagnostic marker and therapeutic target. Spectrum and outcomes of ALK fusions found in thyroid nodules and cancer are not fully characterized. We report a series of 44 ALK-translocated thyroid neoplasms, including 31 identified preoperatively in thyroid fine-needle aspirates (FNA). The average patients’ age was 43 years (range, 8–76 years); only one with radiation history. All 19 resected thyroid nodules with ALK fusion identified preoperatively were malignant. Among nodules with known surgical pathology (n = 32), 84% were papillary thyroid carcinomas (PTCs) and 16% poorly differentiated thyroid carcinomas (PDTCs). PTCs showed infiltrative growth with follicular architecture seen exclusively (30%) or in combination with papillary and/or solid growth (37%). Tumor multifocality was seen in 10 (31%) PTC cases. Most PDTC had a well-differentiated PTC component. Lymph node metastases were identified in 10/18 (56%) patients with neck dissection. The most common ALK fusion partners were STRN (n = 22) and EML4 (n = 17). In five cases, novel ALK fusion partners were discovered. All five PDTCs carried STRN-ALK fusion. On follow-up, ten patients were free of disease at 2–108 months, whereas two patients with PDTC died of disease. In summary, ALK fusion-positive thyroid carcinomas are typically infiltrative PTC with common follicular growth, which may show tumor dedifferentiation associated with increased mortality. Compared to EML4-ALK, STRN-ALK may be more common in PDTC, and ~10% of ALK fusions occur to rare gene partners. When ALK fusion is detected preoperatively in FNA samples, malignancy should be expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.