The "comet-tail" is an ultrasound sign detectable with ultrasound chest instruments; this sign consists of multiple comet-tails fanning out from the lung surface. They originate from water-thickened interlobular septa and would be ideal for nonradiologic bedside assessment of extravascular lung water. To assess the feasibility and value of ultrasonic comet signs, we studied 121 consecutive hospitalized patients (43 women and 78 men; aged 67 ؎ 12 years) admitted to our combined cardiology-pneumology department (including cardiac intensive care unit); the study was conducted with commercially available echocardiographic systems including a portable unit. Transducer frequencies (range 2.5 to 3.5 MHz) were used. In each patient, the right and left chest was scanned by examining predefined locations in multiple intercostal spaces. Examiners blinded to clinical diagnoses noted the presence and numbers of lung comets at each examining site. A patient lung comet score was obtained by summing the number of comets in each of the scanning spaces. Within a few minutes, patients underwent chest x-ray, with specific assessment of extravascular lung water score by 2 pneumologist-radiologists blinded to clinical and echo findings. The chest ultrasound scan was obtained in all patients (feasibility 100%). The imaging time per examination was always <3 minutes. There was a linear correlation between echocardiographic comet score and radiologic lung water score (r ؍ 0.78, p <0.01). Intrapatient variations (n ؍ 15) showed an even stronger correlation between changes in echocardiographic lung comet and radiologic lung water scores (r ؍ 0.89; p <0.01). In 121 consecutive hospitalized patients, we found a linear correlation between echocardiographic comet scores and radiologic extravascular lung water scores. Thus, the comet-tail is a simple, non-time-consuming, and reasonably accurate chest ultrasound sign of extravascular lung water that can be obtained at bedside (also with portable echocardiographic equipment) and is not restricted by cardiac acoustic window limitations.
BackgroundAphids are among the most destructive pests in temperate climates, causing significant damage on several crops including tomato. We carried out a transcriptomic and proteomic study to get insights into the molecular mechanisms and dynamics of the tomato response to the Macrosyphum euphorbiae aphid.ResultsThe time course analysis of aphid infestation indicated a complex, dynamic pattern of gene expression. Several biological functions were affected and genes related to the stress and defence response were the most represented. The Gene Ontology categories of the differentially expressed genes (899) and identified proteins (57) indicated that the tomato response is characterized by an increased oxidative stress accompanied by the production of proteins involved in the detoxification of oxygen radicals. Aphids elicit a defense reaction based on the cross-communication of different hormone-related signaling pathways such as those related to the salicylic acid (SA), jasmonic acid (JA), ethylene and brassinosteroids. Among them, the SA-signaling pathway and stress-responsive SA-dependent genes play a dominant role. Furthermore, tomato response is characterized by a reduced accumulation of photosynthetic proteins and a modification of the expression of various cell wall related genes.ConclusionsOur work allowed a more comprehensive understanding of the signaling events and the defense dynamics of the tomato response to aphids in a compatible interaction and, based on experimental data, a model of the tomato–aphid molecular interaction was proposed. Considering the rapid advancement of tomato genomics, this information will be important for the development of new protection strategies.
Systemin is a signal peptide that promotes the response to wounding and herbivore attack in tomato. This 18-amino acid peptide is released from a larger precursor, prosystemin. To study the role of systemin as a modulator of defense signaling, we generated tomato (Solanum lycopersicum) transgenic plants that overexpress the prosystemin cDNA. We carried out a transcriptomic analysis comparing two different transgenic events with the untransformed control. The Gene Ontology categories of the 503 differentially expressed genes indicated that several biological functions were affected. Systemin promotes the expression of an array of defense genes that are dependent on different signaling pathways and it downregulates genes connected with carbon fixation and carbohydrate metabolism. These alterations present a degree of overlap with the response programs that are classically associated to pathogen defense or abiotic stress protection, implying that end products of the systemin signaling pathway may be more diverse than expected. We show also that the observed transcriptional modifications have a relevant functional outcome, since transgenic lines were more resistant against very different biotic stressors such as aphids (Macrosiphum euphorbiae), phytopathogenic fungi (Botrytis cinerea and Alternaria alternata) and phytophagous larvae (Spodoptera littoralis). Our work demonstrated that in tomato the modulation of a single gene is sufficient to provide a wide resistance against stress by boosting endogenous defense pathways. Overall, the data provided evidence that the systemin peptide might serve as DAMP signal in tomato, acting as a broad indicator of tissue integrity.Electronic supplementary materialThe online version of this article (doi:10.1007/s11105-014-0834-x) contains supplementary material, which is available to authorized users.
BackgroundThe fruit fly Bactrocera oleae is the primary biotic stressor of cultivated olives, causing direct and indirect damages that significantly reduce both the yield and the quality of olive oil. To study the olive-B. oleae interaction, we conducted transcriptomic and proteomic investigations of the molecular response of the drupe. The identifications of genes and proteins involved in the fruit response were performed using a Suppression Subtractive Hybridisation technique and a combined bi-dimensional electrophoresis/nanoLC-ESI-LIT-MS/MS approach, respectively.ResultsWe identified 196 ESTs and 26 protein spots as differentially expressed in olives with larval feeding tunnels. A bioinformatic analysis of the identified non-redundant EST and protein collection indicated that different molecular processes were affected, such as stress response, phytohormone signalling, transcriptional control and primary metabolism, and that a considerable proportion of the ESTs could not be classified. The altered expression of 20 transcripts was also analysed by real-time PCR, and the most striking differences were further confirmed in the fruit of a different olive variety. We also cloned the full-length coding sequences of two genes, Oe-chitinase I and Oe-PR27, and showed that these are wound-inducible genes and activated by B. oleae punctures.ConclusionsThis study represents the first report that reveals the molecular players and signalling pathways involved in the interaction between the olive fruit and its most damaging biotic stressor. Drupe response is complex, involving genes and proteins involved in photosynthesis as well as in the production of ROS, the activation of different stress response pathways and the production of compounds involved in direct defence against phytophagous larvae. Among the latter, trypsin inhibitors should play a major role in drupe resistance reaction.
Background: Indocyanine green (ICG)-guided near-infrared fluorescence (NIRF) has been recently adopted in pediatric minimally invasive surgery (MIS). This study aimed to report our experience with ICG-guided NIRF in pediatric laparoscopy and robotics and evaluate its usefulness and technique of application in different pediatric pathologies.Methods: ICG technology was adopted in 76 laparoscopic and/or robotic procedures accomplished in a single division of pediatric surgery over a 24-month period (January 2018-2020): 40 (37 laparoscopic, three robotic) left varicocelectomies with intra-operative lymphography; 13 (10 laparoscopic, three robotic) renal procedures: seven partial nephrectomies, three nephrectomies, and three renal cyst deroofings; 12 laparoscopic cholecystectomies; five robotic tumor excisions; three laparoscopic abdominal lymphoma excisions; three thoracoscopic procedures: two lobectomies and one lymph node biopsy for suspected lymphoma. The ICG solution was administered into a peripheral vein in all indications except for varicocele and lymphoma in which it was, respectively, injected into the testis body or the target organ. Regarding the timing of the administration, the ICG solution was administered intra-operatively in all indications except for cholecystectomy in which the ICG injection was performed 15-18 h before surgery. Results:No conversions to open or laparoscopy occurred. No adverse and allergic reactions to ICG or other postoperative complications were reported.Conclusions: Based upon our 2 year experience, we believe that ICG-guided NIRF is a very useful tool in pediatric MIS to perform a true imaged-guided surgery, allowing an easier identification of anatomic structures and an easier surgical performance in difficult cases. The most common applications in pediatric surgery include varicocele repair, difficult cholecystectomy, partial nephrectomy, lymphoma, and tumors excision but further indications will be soon discovered. ICG-enhanced fluorescence was technically Esposito et al.ICG-Guided NIRF in Pediatric MIS easy to apply and safe for the patient reporting no adverse reactions to the product. The main limitation is represented by the specific equipment needed to apply ICG-guided NIRF in laparoscopic procedures, that is not available in all centers whereas the ICG system Firefly ® is already integrated into the robotic platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.