Home automation represents a growing market in the industrialized world. Today’s systems are mainly based on ad hoc and proprietary solutions, with little to no interoperability and smart integration. However, in a not so distant future, our homes will be equipped with many sensors, actuators and devices, which will collectively expose services, able to smartly interact and integrate, in order to offer complex services providing even richer functionalities. In this paper we present the approach and results of SM4ALL- Smart hoMes for All, a project investigating automatic service composition and advanced user interfaces applied to domotics
The CERN Proton Synchrotron booster (PSB) is one of the machines of the LHC injector chain which will be upgraded within the LHC Injectors Upgrade (LIU) project. The injection energy of the PSB will be increased to 160 MeV in order to mitigate direct space charge effects, considered to be the main performance limitation, aiming to double the brightness for the LHC beams. In order to better predict the gain to be expected, space charge simulations are being carried out. As a first step, benchmarking between simulations and measurements is needed. Efforts to establish a realistic modeling of field and alignment errors aim at extending the basic model of the machine toward a more realistic one. Simulations of beam dynamics with strong space charge and realistic errors are presented and analyzed in this paper.
In the framework of the LHC Injectors Upgrade project the improvements required to achieve the parameters of the future beams for the High-Luminosity LHC are being studied and implemented. In order to deliver high brightness beams, control over the beam intensity and emittance is fundamental. Therefore, a highly accurate and reliable transverse emittance measurement is essential. Presently at the CERN Proton Synchrotron, the only operationally available emittance monitors not impacting the facility beam production are the flying wire scanners used to measure the circulating beam profile. The wire scanners will be replaced with a new generation in the next two years and a prototype is already installed. The prototype has been commissioned with beams featuring a wide range of intensities and emittances. This paper evaluates the performance of the prototype with respect to the present system via beam-based measurements. The transverse emittance measurement is discussed, considering the different potential error contributions to the measurement, such as knowledge of the machine optics and the dispersive contribution to the beam size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.