The olive tree is one of the most important economic, cultural, and environmental resources for Italy, in particular for the Apulian region, where it shows a wide diversity. The increasing attention to the continuous loss of plant genetic diversity due to social, economic and climatic changes, has favored a renewed interest in strategies aimed at the recovery and conservation of these genetic resources. In the frame of a project for the valorization of the olive Apulian biodiversity (Re.Ger.O.P. project), 177 minor genotypes were recovered in different territories of the region. They were submitted to morphological, molecular, technological and phytosanitary status analysis in comparison with reference cultivars, then they were propagated and transferred in an ex situ field. All the available information was stored in an internal regional database including photographic documentation and geographic position. The work allowed obtaining information about the genetic diversity of Apulian germplasm, to clarify cases of homonymy and synonymy, to check the sanitary status, and to identify candidate genotypes useful both to set up breeding programs and to enrich the panel of olive cultivars available to farmers for commercial exploitation.
After the recent high-impact European outbreaks of Xylella fastidiosa (Xf), a xylem-limited plant pathogenic bacterium native to the Americas, this research aims to rank the risks of potential entry, establishment and spread of Xf in new countries across Europe, the Middle East and North Africa. A novel risk-ranking technique is developed, based on combining entry risk drivers (imported plants, direct flights and ferry connections) with risk factors related to establishment and spread (presence of potential insect vectors, vulnerable economic crops, alternative hosts and climate suitability) of this pathogen. This reveals that western European countries have the highest risk for entry, but that the Mediterranean basin runs the highest risk for establishment and spread of Xf. Lebanon in particular has the highest level of risk for Xf dispersal within its suitable territory. Countries without current outbreaks combining high risks of Xf arrival and establishment are mainly in the Mediterranean basin: Turkey is at the highest level of risk, followed by Greece, Morocco and Tunisia, which are ranked at the high level. The ranking model also confirms the vulnerability, in terms of invasion by Xf, of southern European countries (Italy, Portugal and Spain) in which the pathogen has already been reported. High summer temperatures in these southern countries are likely to be the significant determinant for the overall invasion process, while northern European countries have a high level risk for the arrival of the pathogen, but relatively low summer temperatures may limit establishment and spread of major outbreaks. In general, our study provides a useful approach for mapping and comparing risks of invasive non-native species and emerging pathogens between countries, which could be useful for regional horizon scanning and phytosanitary and biosecurity management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.