The hematopoietic system produces a large number of highly specialized cell types that are derived through a hierarchical differentiation process from a common stem cell population. miRNAs are critical players in orchestrating this differentiation. Here, we report the development and application of a high-throughput microfluidic real-time quantitative PCR (RT-qPCR) approach for generating global miRNA profiles for 27 phenotypically distinct cell populations isolated from normal adult mouse hematopoietic tissues. A total of 80,000 RT-qPCR assays were used to map the landscape of miRNA expression across the hematopoietic hierarchy, including rare progenitor and stem cell populations. We show that miRNA profiles allow for the direct inference of cell lineage relations and functional similarity. Our analysis reveals a close relatedness of the miRNA expression patterns in multipotent progenitors and stem cells, followed by a major reprogramming upon restriction of differentiation potential to a single lineage. The analysis of miRNA expression in single hematopoietic cells further demonstrates that miRNA expression is very tightly regulated within highly purified populations, underscoring the potential of single-cell miRNA profiling for assessing compartment heterogeneity.RT-qPCR | stem cell | hematopoiesis | microfluidic | single cell
Key Points A real-time, integrated fluorescent Wnt reporter marks rare leukemia stem cells in T-ALL. Deletion of β-catenin or Hif1α reduces LIC frequency in established tumors, but does not affect the growth of bulk cells.
Reactive oxygen species (ROS), a by-product of cellular metabolism, damage intracellular macromolecules and, in excess, can promote normal hematopoietic stem cell differentiation and exhaustion1–3. However, mechanisms that regulate ROS levels in leukemia-initiating cells (LICs) and the biological role of ROS in these cells remain largely unknown. We show here the ROSlow subset of CD44+ cells in T-cell acute lymphoblastic leukemia (T-ALL), a malignancy of immature T-cell progenitors, to be highly enriched in the most aggressive LICs, and that ROS are maintained at low levels by downregulation of protein kinase C theta (PKCθ). Strikingly, primary mouse T-ALLs lacking PKCθ show improved LIC activity whereas enforced PKCθ expression in both mouse and human primary T-ALLs compromised LIC activity. We also demonstrate that PKCθ is positively regulated by RUNX1, and that NOTCH1, which is frequently activated by mutation in T-ALL4–6 and required for LIC activity in both mouse and human models7,8, downregulates PKCθ and ROS via a novel pathway involving induction of RUNX3 and subsequent repression of RUNX1. These results reveal key functional roles for PKCθ and ROS in T-ALL and suggest that aggressive biological behavior in vivo could be limited by therapeutic strategies that promote PKCθ expression/activity or ROS accumulation.
BackgroundThe Immunoglobulin heavy chain (IgH) 3' Regulatory Region (3'RR), located at the 3' of the constant alpha gene, plays a crucial role in immunoglobulin production. In humans, there are 2 copies of the 3'RR, each composed of 4 main elements: 3 enhancers and a 20 bp tandem repeat. The single mouse 3'RR differs from the two human ones for the presence of 4 more regulative elements with the double copy of one enhancer at the border of a palindromic region.ResultsWe compared the 3'RR organization in genomes of vertebrates to depict the evolutionary history of the region and highlight its shared features. We found that in the 8 species in which the whole region was included in a fully assembled contig (mouse, rat, dog, rabbit, panda, orangutan, chimpanzee, and human), the shared elements showed synteny and a highly conserved sequence, thus suggesting a strong evolutionary constraint. In these species, the wide 3'RR (~30 kb in human) bears a large palindromic sequence, consisting in two ~3 kb complementary branches spaced by a ~3 kb sequence always including the HS1.2 enhancer. In mouse and rat, HS3 is involved by the palindrome so that one copy of the enhancer is present on each side. A second relevant feature of our present work concerns human polymorphism of the HS1.2 enhancer, associated to immune diseases in our species. We detected a similar polymorphism in all the studied Catarrhini (a primate parvorder). The polymorphism consists of multiple copies of a 40 bp element up to 12 in chimpanzees, 8 in baboons, 6 in macaque, 5 in gibbons, 4 in humans and orangutan, separated by stretches of Cytosine. We show specific binding of this element to nuclear factors.ConclusionsThe nucleotide sequence of the palindrome is not conserved among evolutionary distant species, suggesting pressures for the maintenance of two self-matching regions driving a three-dimensional structure despite of the inter-specific divergence at sequence level. The information about the conservation of the palindromic structure and the settling in primates of the polymorphic feature of HS1.2 show the relevance of these structures in the control and modulation of the Ig production through the formation of possible three-dimensional structures.
The enhancer complex regulatory region at the 3V of the immunoglobulin heavy cluster (IgH3VEC) is duplicated in apes along with four constant genes and the region is highly conserved throughout humans. Both human IgH3VECs consist of three loci high sensitive (HS) to DNAse I with enhancer activity. It is thus possible that the presence of structural divergences between the two IgH3VECs and of relative polymorphisms correspond to functional regulatory changes. To analyse the polymorphisms of these almost identical regions, it resulted mandatory to identify the presence of divergent sequences, in order to select distinctive primers for specific PCR genomic amplifications. To this aim, we first compared the two entire IgH3VECs in silicio, utilising the updated GenBank (GB) contigs, then we analysed the two IgH3'ECs by cloning and sequencing amplicons from independent genomes. In silicio analysis showed that several inversions, deletions and short insertions had occurred after the duplication. We analysed in detail, by sequencing specific regions, the polymorphisms occurring in enhancer HS1,2-A (which lies in IgH3VEC-1, 3V to the Ca-1 gene) and in enhancer HS1,2-B (which lies in IgH3VEC-2, 3V to Ca-2). Polymorphisms are due to the repetition (occurring one to four times) of a 38-bp sequence present at the 3V of the core of enhancers HS1,2. The structure of both human HS1,2 enhancers has revealed not yet described polymorphic features due to the presence of variable spacer elements separating the 38-bp repetitions and to variable external elements bordering the repetition cluster. We found that one of the external elements gave rise to a divergent allele 3 in the two clusters. The frequency of the different alleles of the two loci varies in the Italian population and allele 3 of both loci are very rare. The analysis of the Callicebus moloch, Gorilla gorilla and Pan troglodytes HS1,2 enhancers showed the transformation from the ancestral structure with the 31-to the 17-bp external element in hominids.The relevance of the polymorphisms in the HS1,2 enhancers is due to the variable number of binding sites for the transcription factors: NF-nB, CMYB, BSAP1/2, AP1/4, E47, MyoD and AE5 and thus to the possible influence of these variations on switch, production of Ig and on maturation of B cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.