The paper is focused on a new perspective in solving dynamics inverse problems, by considering recurrent equations based on Metabolic P (MP) grammars. MP grammars are a particular type of multiset rewriting grammars, introduced in 2004 for modeling metabolic systems, which express dynamics in terms of finite difference equations. Regression algorithms, based on MP grammars, were introduced since 2008 for algorithmically solving dynamics inverse problems in the context of biological phenomena. This paper shows that, when MP regression is applied to time series of circular functions (where time is replaced by rotation angle), the dynamics that is found turns out to coincide with recurrent equations derivable from classical analytical definitions of these functions. This validates the MP regression as a general methodology to discover deep logics underlying observed dynamics. At the end of the paper some applications are also discussed, which exploit the regression capabilities of the MP framework for the analysis of periodical signals and for the implementation of sequential circuits providing periodical oscillators. When an initial state X [0] is given to an MP grammar G, then, starting from it, we pass from any state to its following state by applying all the rules of the grammar, that is, by summing the decrements and increments acting on each variable, according to all the rules where it occurs. It is easy to show that the corresponding dynamics is expressed with recurrent equations, which are synthetically represented in matricial form [10]. Recurrent Solutions to DynamicsWhen variables are equipped with measurement units (related to their interpretation), and a time duration is associated to each step, the MP grammar is more properly called an MP system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.