Purpose The assessment of the economic feasibility of floating offshore wind farms (FOWFs) plays an important role in the future possible spreading of this challenging technology in the wind power industry. The use of specific economic analyses is fundamental to point out the potential of FOWFs and to sustain their technical value. Within this topic, the implementation of the FOWF life cycle cost model and producibility analysis in a geographic information system is developed, with the aim of carrying out a feasibility analysis at the territorial scale, for different types of floater. Moreover, a simplified model for a quick life cycle cost assessment is proposed and calibrated. Methods The available cost model is first validated comparing the costs of FOWFs based on different floaters (Semi-Submersible Platform—SSP, Spar Buoy—SB and Tension Leg Platform—TLP) with corresponding results available in the literature. Then, it is implemented in QGIS to be used for territorial-scale analyses and sensitivity analyses of the cost parameters. A feasibility analysis is developed through the main financial parameters. Finally, the results are then used to calibrate a simplified version of the cost model that depends on three main parameters, namely distance to shore, distance from the port of operation and bathymetry. Results and discussion The FOWF cost values are found to be in good agreement with those coming from analytical methods similar to the one from the authors. However, some discrepancies with those based on average costs are observed. Then, the results of the sensitivity analysis are presented as life cycle cost maps, giving an overall picture of the variation of the total cost of FOWF installations on a reference domain. The results show that among the three types of floaters considered here, the SSP proved to be the most promising one, giving lower costs than the SB and the TLP. Moreover, a good agreement between the results in terms of total cost of FOWFs calculated with the analytical and simplified models for SSPs, SBs and TLPs is observed. Finally, the feasibility analysis showed that the financial parameters are more influenced by the wind speed than by the cost of the farm. Conclusions The paper aims to provide guidance on how to carry out feasibility analyses of a specific site for FOWF installation, thus supporting decision-making procedures. The approach and the results presented here are meant for use in the early stage of the decision-making process, as a tool for the assessment of the economic feasibility of FOWFs installation.
Wind induced pressures on buildings are the product of a velocity pressure and a pressure coefficient. The way in which these two quantities are calculated has changed over the years, and Design Codes have been modified accordingly. This paper tracks the evolution of the approach to wind loading of buildings from the practice in the 1950s, mainly referring to the Swiss Code SIA, to the most recent advances including probabilistic methods, internet databases, and advanced modelling of meteorological phenomena.
The analytical prediction of the effectiveness of fiber-reinforced polymer (FRP) in the confinement of a rectangular reinforced concrete (RC) column with a high aspect ratio (wall-like) still has an uncertain solution. In this paper, a numerical investigation of the axial response of RC wall-like columns strengthened with FRP systems was developed. Analytical solutions proposed in the literature for the assessment of the axial load capacity were presented and compared with each other and with the available experimental results. Moreover, non-linear finite element analysis was carried out, and the results were discussed, providing a simple model for the assessment of the axial compressive strength of wall-like RC columns strengthened with FRP.
Among the load scenarios considered for the serviceability assessment of human-induced footbridge vibration, is that of the transient action of a single pedestrian or a small group of pedestrians. Although such action is stochastic due to the variability of gait parameters, available Codes and Guidelines all assume it is deterministic and equal to that coming from the “worst pedestrian ever” for the given footbridge. This approach is sound from an engineering point of view but does not allow control of the probability of failure. The present work deals with a reliability-based procedure for the serviceability assessment of the footbridge peak characteristic accelerations due to pedestrian induced actions. Based on the results obtained incorporating the effects of the inter-subject variability of gait parameters and of the uncertainties in footbridge dynamic properties, a design response spectrum is proposed for both vertical and lateral vibrations. The proposed procedure lends itself for immediate Code implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.