SARS-CoV-2 infection shows a wide-ranging clinical severity, requiring prognostic markers. We focused on S100B, a calcium-binding protein present in biological fluids, being a reliable biomarker in disorders having inflammatory processes as common basis and RAGE as main receptor. Since Covid-19 is characterized by a potent inflammatory response also involving RAGE, we tested if S100B serum levels were related to disease severity. Serum samples (n = 74) were collected from hospitalized SARS-CoV-2 positive patients admitted to Covid center. Illness severity was established by admission clinical criteria and Covid risk score. Treatment protocols followed WHO guidelines available at the time. Circulating S100B was determined by ELISA assay. Statistical analysis used Pearson’s χ2 test, t-Test, and ANOVA, ANCOVA, Linear Regression. S100B was detected in serum from Covid-19 patients, significantly correlating with disease severity as shown both by the level of intensity of care (p < 0.006) as well by the value of Covid score (Multiple R-squared: 0.3751); the correlation between Covid-Score and S100B was 0.61 (p < 0.01). S100B concentration was associated with inflammation markers (Ferritin, C-Reactive Protein, Procalcitonin), and organ damage markers (Alanine Aminotransferase, Creatinine). Serum S100B plays a role in Covid-19 and can represent a marker of clinical severity in Sars-CoV-2 infected patients.
In the present study, we use modified CDR3 beta-chain spectratyping (immunoscope) to dissect the effect of Mycobacterium tuberculosis (MT)-derived proteins on individual PLP139-151-specific cells in the SJL mouse strain. In this model, the immunoscope technique allows the characterization of a public TCR that involves rearrangement of Vbeta10 and Jbeta1.1 and a semi-private TCR characterized by rearrangement of Vbeta4 and Jbeta1.6. Both rearrangements are specific for PLP139-151 and sequences of the CDR3 region of the two beta-chains show a conserved motif for the public rearrangement and related but more variable sequences for the semi-private rearrangement. MT-derived proteins promote increase of IFN-gamma-secreting cells. However, we observe that the presence and amount of MT used during immunization have no effect on the frequency of usage, polarization and in vivo expansion of cells carrying the studied rearrangements. Rather, the strong Th1-promoting effect of adjuvant is possibly due to recruitment toward Th1 of a wider spectrum of TCR repertoires. Therefore, instead of having a comprehensive effect on the entire repertoire, MT modulates the immune response by affecting a subset of antigen-specific T cells whose polarization can be adapted to the environment. This step establishes the final balance between Th1 and Th2 and may be essential for the enhancement or protection of disease.
Microarrays produce a measurement of gene expression based on the relative measures of dye intensities that correspond to the amount of target RNA. This technology is fast developing and its application is expanding from Homo sapiens to a wide number of species, where enough information on sequences and annotations exist. Anyway, the number of species for which a dedicated platform exists is not high. The use of heterologous array hybridization, screening for gene expression in one species using an array developed for another one, is still quite frequent, even though cross-species microarray hybridization has raised many arguments. Some methods which are high throughput and do not rely on knowledge of the DNA/RNA sequence exist, namely serial analysis of gene expression (SAGE), Massively Parallel Signature Sequencing (MPSS) and deep sequencing of full transcriptome. Although very powerful, particularly the latter, they are still quite costly and cumbersome methods. In some species where genome sequences are largely unknown, several anonymous sequences are deposited in gene banks as a result of Expressed Sequence Tags (ESTs) sequencing projects. The ESTs databases represent a valuable knowledge that can be exploited with some bioinformatic effort to build species-specific microarrays. We present here a method of high-density in situ synthesized microarrays starting from available EST sequences in, Ovis aries. Our data indicate that the method is very efficient and can be easily extended to other species of which genetic sequences are present in public databases, but neglected so far with advanced devices like microarrays. As a perspective, the approach can be applied also to species of which no sequences are available to date, thanks to high-throughput deep sequencing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.