In Table 1, the word "Trihexyphenidyl" is misspelled and the structures given for L-dopa and Piribedil are incorrect. The correct structures for these compounds are shown below.
To date, the pharmacotherapy of Alzheimer's disease (AD) has relied on acetylcholinesterase (AChE) inhibitors (AChEIs) and, more recently, an N-methyl-D-aspartate receptor (NMDAR) antagonist. AD is a multifactorial syndrome with several target proteins contributing to its etiology. "Multi-target-directed ligands" (MTDLs) have great potential for treating complex diseases such as AD because they can interact with multiple targets. The design of compounds that can hit more than one specific AD target thus represents an innovative strategy for AD treatment. Tacrine was the first AChEI introduced in therapy. Recent studies have demonstrated its ability to interact with different AD targets. Furthermore, numerous tacrine homo- and heterodimers have been developed with the aim of improving and enlarging its biological profile beyond its ability to act as an AChEI. Several tacrine hybrid derivatives have been designed and synthesized with the same goal. This review will focus on and summarize the last two years of research into the development of tacrine derivatives able to hit AD targets beyond simple AChE inhibition.
Alzheimer's disease (AD) is a multifactorial syndrome with several target proteins contributing to its etiology. To confront AD, an innovative strategy is to design single chemical entities able to simultaneously modulate more than one target. Here, we present compounds that inhibit acetylcholinesterase and NMDA receptor activity. Furthermore, these compounds inhibit AChE-induced Abeta aggregation and display antioxidant properties, emerging as lead candidates for treating AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.