In this paper, the distributed computation of confidence regions for parameter estimation is considered. Some information diffusion strategies are proposed and compared in terms of the required number of data exchanges to get the corresponding region. The effects of algorithms truncation is also addressed. As support for the theoretical part, numerical results are presented.
This paper addresses the distributed computation of exact, non-asymptotic confidence regions for the parameter estimation of a linear model from observations at different nodes of a network of sensors. If a central unit gathers all the data, the sign perturbed sums (SPS) method proposed by Csáji et al. can be used to define guaranteed confidence regions with prescribed confidence levels from a finite number of measurements. SPS requires only mild assumptions on the measurement noise. This work proposes distributed solutions, based on SPS and suited to a wide variety of sensor networks, for distributed in-node evaluation of non-asymptotic confidence regions as defined by SPS. More specifically, a Tagged and Aggregated Sum information diffusion algorithm is introduced, which exploits the specificities of SPS to avoid flooding the network with all measurements provided by the sensors. The performance of the proposed solutions is evaluated in terms of required traffic load, both analytically and experimentally on different network topologies. The best information diffusion strategy among nodes depends on how structured the network is.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.