This study investigates the performance of electrocoagulation integrated membrane bioreactor (EMBR) in treating synthetic wastewater enriched with heavy metals (Cu, Cr, and Zn). This hybrid system was compared with a conventional membrane bioreactor (MBR). The results suggest that it is superior to conventional MBR in terms to chemical oxygen demand removal, flux improvement, fouling reduction, and metal removal. The metal removal efficiencies in both MBR and EMBR followed the sequence Cr > Cu > Zn. The average removal efficiencies in MBR were 60.90, 53.24, and 48.22% for Cr, Cu, and Zn, respectively, while for the EMBR 98.60, 97.53, and 93.52% could be achieved, respectively. The mixed liquor suspended solids (MLSS) concentration was also found to affect the metal removal potential of the MBR. In MBR, metal removal and MLSS concentration showed significant relationship, while in EMBR, this correlation was found to be less. The specific energy consumption for removing each metal by EMBR was calculated and found to be 6.62, 6.94, and 6.69 kWh/kg removed for Cr, Zn, and Cu, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.