Biomass gasification is a widely used thermochemical process for obtaining products with more value and potential applications than the raw material itself. Cutting-edge, innovative and economical gasification techniques with high efficiencies are a prerequisite for the development of this technology. This paper delivers an assessment on the fundamentals such as feedstock types, the impact of different operating parameters, tar formation and cracking, and modelling approaches for biomass gasification. Furthermore, the authors comparatively discuss various conventional mechanisms for gasification as well as recent advances in biomass gasification. Unique gasifiers along with multi-generation strategies are discussed as a means to promote this technology into alternative applications, which require higher flexibility and greater efficiency. A strategy to improve the feasibility and sustainability of biomass gasification is via technological advancement and the minimization of socio-environmental effects. This paper sheds light on diverse areas of biomass gasification as a potentially sustainable and environmentally friendly technology
Biofuels from biomass gasification are reviewed here, and demonstrated to be an attractive option. Recent progress in gasification techniques and key generation pathways for biofuels production, process design and integration and socio-environmental impacts of biofuel generation are discussed, with the goal of investigating gasification-to-biofuels’ credentials as a sustainable and eco-friendly technology. The synthesis of important biofuels such as bio-methanol, bio-ethanol and higher alcohols, bio-dimethyl ether, Fischer Tropsch fuels, bio-methane, bio-hydrogen and algae-based fuels is reviewed, together with recent technologies, catalysts and reactors. Significant thermodynamic studies for each biofuel are also examined. Syngas cleaning is demonstrated to be a critical issue for biofuel production, and innovative pathways such as those employed by Choren Industrietechnik, Germany, and BioMCN, the Netherlands, are shown to allow efficient methanol generation. The conversion of syngas to FT transportation fuels such as gasoline and diesel over Co or Fe catalysts is reviewed and demonstrated to be a promising option for the future of biofuels. Bio-methane has emerged as a lucrative alternative for conventional transportation fuel with all the advantages of natural gas including a dense distribution, trade and supply network. Routes to produce H2 are discussed, though critical issues such as storage, expensive production routes with low efficiencies remain. Algae-based fuels are in the research and development stage, but are shown to have immense potential to become commercially important because of their capability to fix large amounts of CO2, to rapidly grow in many environments and versatile end uses. However, suitable process configurations resulting in optimal plant designs are crucial, so detailed process integration is a powerful tool to optimize current and develop new processes. LCA and ethical issues are also discussed in brief. It is clear that the use of food crops, as opposed to food wastes represents an area fraught with challenges, which must be resolved on a case by case basis
This review article focuses on the challenges and opportunities of biomass-based chemical looping technologies and explores fundamentals, recent developments and future perspectives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.