The prediction of protein subcellular localization is of great relevance for proteomics research. Here, we propose an update to the popular tool DeepLoc with multi-localization prediction and improvements in both performance and interpretability. For training and validation, we curate eukaryotic and human multi-location protein datasets with stringent homology partitioning and enriched with sorting signal information compiled from the literature. We achieve state-of-the-art performance in DeepLoc 2.0 by using a pre-trained protein language model. It has the further advantage that it uses sequence input rather than relying on slower protein profiles. We provide two means of better interpretability: an attention output along the sequence and highly accurate prediction of nine different types of protein sorting signals. We find that the attention output correlates well with the position of sorting signals. The webserver is available at services.healthtech.dtu.dk/service.php?DeepLoc-2.0.
Motivation
Solubility and expression levels of proteins can be a limiting factor for large-scale studies and industrial production. By determining the solubility and expression directly from the protein sequence, the success rate of wet-lab experiments can be increased.
Results
In this study, we focus on predicting the solubility and usability for purification of proteins expressed in Escherichia coli directly from the sequence. Our model NetSolP is based on deep learning protein language models called transformers and we show that it achieves state-of-the-art performance and improves extrapolation across datasets. As we find current methods are built on biased datasets, we curate existing datasets by using strict sequence-identity partitioning and ensure that there is minimal bias in the sequences.
Availability
The predictor and data are available at https://services.healthtech.dtu.dk/service.php?NetSolP and the open-sourced code is available at https://github.com/tvinet/NetSolP-1.0
Supplementary information
Supplementary data is attached in submission.
Solubility and expression levels of proteins can be a limiting factor for large-scale studies and industrial production. By determining the solubility and expression directly from the protein sequence, the success rate of wet-lab experiments can be increased. In this study, we focus on predicting the solubility and usability for purification of proteins expressed in Escherichia coli directly from the sequence. Our model NetSolP is based on deep-learning protein language models called transformers and we show that it achieves state-of-the-art performance and improves extrapolation across datasets. As we find current methods are built on biased datasets, we curate existing datasets by using strict sequence-identity partitioning and ensure that there is minimal bias in the sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.