Cigarette smoking is the most preventable risk factor related to cardiovascular morbidity and mortality. Tobacco usage has declined in recent years; however, the use of alternative nicotine delivery methods, particularly e-cigarettes, has increased exponentially despite limited data on their short- and long-term safety and efficacy. Due to their unique properties, the impact of e-cigarettes on cardiovascular physiology is not fully known. Here, we summarize both preclinical and clinical data extracted from short- and long-term studies on the cardiovascular effects of e-cigarette use. Current findings support that e-cigarettes are not a harm-free alternative to tobacco smoke. However, the data are primarily derived from acute studies. The impact of chronic e-cigarette exposure is essentially unstudied. To explore the uniqueness of e-cigarettes, we contemplate the cardiovascular effects of individual e-cigarette constituents. Overall, data suggest that exposure to e-cigarettes could be a potential cardiovascular health concern. Further preclinical research and randomized trials are needed to expand basic and clinical investigations before considering e-cigarettes safe alternatives to conventional cigarettes.
SUMMARYAtrial fibrillation (AF) is the most common cardiac arrhythmia and carries a significant risk of stroke and heart failure. The molecular etiologies of AF are poorly understood, leaving patients with limited therapeutic options. AF has been recognized as an inherited disease in almost 30% of patient cases. However, few genetic loci have been identified and the mechanisms linking genetic variants to AF susceptibility remain unclear. By sequencing 193 probands with lone AF, we identified a Q76E variant within the coding sequence of the bone morphogenetic protein (BMP) antagonist gremlin-2 (GREM2) that increases its inhibitory activity. Functional modeling in zebrafish revealed that, through regulation of BMP signaling, GREM2 is required for cardiac laterality and atrial differentiation during embryonic development. GREM2 overactivity results in slower cardiac contraction rates in zebrafish, and induction of previously identified AF candidate genes encoding connexin-40, sarcolipin and atrial natriuretic peptide in differentiated mouse embryonic stem cells. By live heart imaging in zebrafish overexpressing wild-type or variant GREM2, we found abnormal contraction velocity specifically in atrial cardiomyocytes. These results implicate, for the first time, regulators of BMP signaling in human AF, providing mechanistic insights into the pathogenesis of the disease and identifying potential new therapeutic targets.
The Bone Morphogenetic Protein antagonist Gremlin 2 (Grem2) is required for atrial differentiation and establishment of cardiac rhythm during embryonic development. A human Grem2 variant has been associated with familial atrial fibrillation, suggesting that abnormal Grem2 activity causes arrhythmias. However, it is not known how Grem2 integrates into signaling pathways to direct atrial cardiomyocyte differentiation. Here, we demonstrate that Grem2 expression is induced concurrently with the emergence of cardiovascular progenitor cells during differentiation of mouse embryonic (ES) stem cells. Grem2 exposure enhances the cardiogenic potential of ES cells by ~20–120 fold, preferentially inducing genes expressed in atrial myocytes such as Myl7, Nppa and Sarcolipin. We show that Grem2 acts upstream to upregulate pro-atrial transcriptional factors CoupTFII and Hey1 and downregulate atrial fate repressors Irx4 and Hey2. The molecular phenotype of Grem2-induced atrial cardiomyocytes was further supported by induction of ion channels encoded by Kcnj3, Kcnj5, and Cacna1D genes and establishment of atrial-like action potentials shown by electrophysiological recordings. We show that promotion of atrial-like cardiomyocyte is specific to the Gremlin subfamily of BMP antagonists. Grem2 pro-atrial differentiation activity is conveyed by non-canonical BMP signaling through phosphorylation of JNK and can be reversed by specific JNK inhibitors, but not by dorsomorphin, an inhibitor of canonical BMP signaling. Taken together, our data provide novel mechanistic insights into atrial cardiomyocyte differentiation from pluripotent stem cells and will assist the development of future approaches to study and treat arrhythmias.
BackgroundParticulate matter (PM; PM 2.5 [PM with diameters of <2.5 μm]) exposure during development is strongly associated with adverse cardiovascular outcomes at adulthood. In the present study, we tested the hypothesis that in utero PM 2.5 exposure alone could alter cardiac structure and function at adulthood.Methods and ResultsFemale FVB mice were exposed either to filtered air or PM 2.5 at an average concentration of 73.61 μg/m3 for 6 h/day, 7 days/week throughout pregnancy. After birth, animals were analyzed at 12 weeks of age. Echocardiographic (n=9–10 mice/group) and pressure‐volume loop analyses (n=5 mice/group) revealed reduced fractional shortening, increased left ventricular end‐systolic and ‐diastolic diameters, reduced left ventricular posterior wall thickness, end‐systolic elastance, contractile reserve (dP/dtmax/end‐systolic volume), frequency‐dependent acceleration of relaxation), and blunted contractile response to β‐adrenergic stimulation in PM 2.5‐exposed mice. Isolated cardiomyocyte (n=4–5 mice/group) function illustrated reduced peak shortening, ±dL/dT, and prolonged action potential duration at 90% repolarization. Histological left ventricular analyses (n=3 mice/group) showed increased collagen deposition in in utero PM 2.5‐exposed mice at adulthood. Cardiac interleukin (IL)‐6, IL‐1ß, collagen‐1, matrix metalloproteinase (MMP) 9, and MMP13 gene expressions were increased at birth in in utero PM 2.5‐exposed mice (n=4 mice/group). In adult hearts (n=5 mice/group), gene expressions of sirtuin (Sirt) 1 and Sirt2 were decreased, DNA methyltransferase (Dnmt) 1, Dnmt3a, and Dnmt3b were increased, and protein expression (n=6 mice/group) of Ca2+‐ATPase, phosphorylated phospholamban, and Na+/Ca2+ exchanger were decreased.ConclusionsIn utero PM 2.5 exposure triggers an acute inflammatory response, chronic matrix remodeling, and alterations in Ca2+ handling proteins, resulting in global adult cardiac dysfunction. These results also highlight the potential involvement of epigenetics in priming of adult cardiac disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.