Along with COVID-19 pandemic we are also fighting an 'infodemic'. Fake news and rumors are rampant on social media. Believing in rumors can cause significant harm. This is further exacerbated at the time of a pandemic. To tackle this, we curate and release a manually annotated dataset of 10,700 social media posts and articles of real and fake news on COVID-19. We perform a binary classification task (real vs fake) and benchmark the annotated dataset with four machine learning baselines -Decision Tree, Logistic Regression, Gradient Boost, and Support Vector Machine (SVM). We obtain the best performance of 93.32% F1-score with SVM on the test set. The data and code is available at: https://github.com/parthpatwa/covid19-fake-news-dectection.
Fake news, hostility, defamation are some of the biggest problems faced in social media. We present the findings of the shared tasks (https://constraint-shared-task-2021.github.io/) conducted at the CONSTRAINT Workshop at AAAI 2021. The shared tasks are 'COVID19 Fake News Detection in English' and 'Hostile Post Detection in Hindi'. The tasks attracted 166 and 44 team submissions respectively. The most successful models were BERT or its variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.