Lead-free Mn-doped (K0.5, Na0.5)NbO3 (KNN) thin films were fabricated by the chemical solution deposition method. The addition of small concentration of Mn dopant effectively reduced the leakage current density and enhanced the piezoelectric properties of the films. The leakage current density of 0.5 mol. % Mn-doped KNN film showed the lowest value of ∼10-7 A/cm2 at 10 V compared to the films with other doping concentrations and the piezoelectric d33 and e31 coefficients of this film were ∼90 pm/V and −8.5 C/m2, respectively. The maximum power and power density of the lead-free thin film-based vibrational energy harvesting device were 3.62 μW and 1800 μW/cm3 at the resonance frequency of 132 Hz and the acceleration of 1.0 G. The results prove that the 0.5 mol. % Mn-doped KNN film is an attractive candidate transducer layer for the piezoelectric MEMS energy harvesting device applications with a small volume and a long-lasting power source.
Environmentally benign lead-free ferroelectric (K0.5,Na0.5)(Mn0.005,Nb0.995)O3 (KNMN) thin film capacitors with a small concentration of a BiFeO3 (BF) dopant were prepared by a cost effective chemical solution deposition method for high energy density storage device applications. 6 mol. % BF-doped KNMN thin films showed very slim hysteresis loops with high maximum and near-zero remanent polarization values due to a phase transition from the orthorhombic structure to the pseudo-cubic structure. Increasing the electric field up to 2 MV/cm, the total energy storage density (Jtotal), the effective recoverable energy density (Jeff), and the energy conversion efficiency (η) of lead-free KNMN-BF thin film capacitors were 31.0 J/cm3, 28.0 J/cm3, and 90.3%, respectively. In addition, these thin film capacitors exhibited a fast discharge time of a few μs and a high temperature stability up to 200 °C, proving their strong potential for high energy density storage and conversion applications.
SrLa2Mg2W2O12 and Sr2La2MgW2O12 ceramics were prepared by the conventional solid‐state ceramic route and their dielectric properties were investigated in the radio and microwave frequency regions. SrLa2Mg2W2O12 sintered at 1500°C has ɛr=25.2, Qu×f=15 900 GHz (at 4.9 GHz), and τf=0 ppm/°C. Sr2La2MgW2O12 sintered at 1525°C has ɛr=24.7, Qu×f=35 000 GHz (at 4.7 GHz), and τf=−83 ppm/°C. The dielectric properties of these ceramics are reported for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.