The phylogenetic diversity of Bacteria and Archaea within a biodegraded, mesothermic petroleum reservoir in the Schrader Bluff Formation of Alaska was examined by two culture-independent methods based on fosmid and small-subunit rRNA gene PCR clone libraries. Despite the exclusion of certain groups by each method, there was overall no significant qualitative difference in the diversity of phylotypes recovered by the two methods. The resident Bacteria belonged to at least 14 phylum-level lineages, including the polyphyletic Firmicutes, which accounted for 36.2% of all small-subunit rRNA gene-containing (SSU(+)) fosmid clones identified. Members of uncultured divisions were also numerous and made up 35.2% of the SSU(+) fosmid clones. Clones from domain Archaea accounted for about half of all SSU(+) fosmids, suggesting that their cell numbers were comparable to those of the Bacteria in this microbial community. In contrast to the Bacteria, however, nearly all archaeal clones recovered by both methods were related to methanogens, especially acetoclastic methanogens, while the plurality of bacterial fosmid clones was affiliated with Synergistes-like acetogenic Firmicutes that possibly degrade longer-chain carboxylic acid components in the crude oil to acetate. These data suggest that acetate may be a key intermediary metabolite in this subsurface anaerobic food chain, which leads to methane production as the primary terminal electron sink.
High-throughput identification of rRNA gene-containing clones in large insert metagenomic libraries is difficult, because of the high background of host ribosomal RNA (rRNA) and rRNA genes. To address this challenge, a membrane hybridization method was developed to identify all bacterial small subunit rRNA-containing fosmid clones of microbial community DNA from seven different depths in the North Pacific Subtropical Gyre. Out of 101,376 clones screened, 751 rDNA-containing clones were identified that grouped in approximately 60 different clades. Several rare sequences only remotely related to known groups were detected, including a Wolbachia-related sequence containing a putative intron or intervening sequence, as well as seven sequences from Order Myxococcales not previously detected in pelagic habitats. Stratified, depth-specific population structure was evident within both cultured and uncultured lineages. Conversely, some eurybathyal members of the genera Alcanivorax and Rhizobium shared identical small subunit ribosomal DNA sequences that were distributed from surface waters to the 4000 m depth. Comparison with similar analyses in Monterey Bay microbial communities revealed previously recognized, as well as some distinctive, depth-stratified partitioning that distinguished coastal from open ocean bacterioplankton populations. While some bias was evident in fosmid clone recovery in a few particular lineages, the overall phylogenetic group recovery and distributions were consistent with previous studies, as well as with direct shotgun sequence data from the same source DNA.
Myxococcus xanthus genetic mutants with characterized phenotypes were analysed for the ability to prey on susceptible bacteria. Quantification of predatory ability was scored by a newly developed method under conditions in which prey bacteria provided the only source of nutrients. These results were corroborated by data derived using a previously published protocol that measures predation in the presence of limited external nutrients. First, early developmental regulatory mutants were examined, because their likely functions in assessing the local nutrient status were predicted to be also important for predation. The results showed that predation efficiency is reduced by 64-80 % for mutants of three A-signalling components, AsgA, AsgC and AsgE, but not for AsgB. This suggests that an Asg regulon function that is separate from A-signal production is needed for predation. Besides the Asg components, mutations in the early developmental genes sdeK and csgA were also consistently observed to reduce predatory efficacy by 36 and 33 %, respectively. In contrast, later developmental components, such as DevRS, 4406 and PhoP4, did not appear to play significant roles in predation. The predatory abilities of mutants defective for motility were also tested. The data showed that adventurous, but not social, motility is required for predation in the assay. Also, mutants for components in the chemotaxis-like Frz system were found to be reduced in predation efficiency by between 62 and 85 %. In sum, it was demonstrated here that defects in development and development-related processes affect the ability of M. xanthus to prey on other bacteria.
1To gain improved temporal, spatial and phylogenetic resolution of marine microbial communities, in 2 this study we expanded the original prototype genome proxy array (an oligonucleotide microarray
Phosphate regulation is complex in the developmental prokaryote Myxococcus xanthus, and requires at least four two-component systems (TCSs). Here, the identification and characterization of a member of one TCS, designated PhoP4, is reported. phoP4 insertion and in-frame deletion strains caused spore viability to be decreased by nearly two orders of magnitude, and reduced all three development-specific phosphatase activities by 80-90 % under phosphate-limiting conditions. Microarray and quantitative PCR analyses demonstrated that PhoP4 is also required for appropriate expression of the predicted pstSCAB-phoU operon of inorganic phosphate assimilation genes. Unlike the case for the other three M. xanthus Pho TCSs, the chromosomal region around phoP4 does not contain a partner histidine kinase gene. Yeast two-hybrid analyses reveal that PhoP4 interacts reciprocally with PhoR2, the histidine kinase of the Pho2 TCS; however, the existence of certain phenotypic differences between phoP4 and phoR2 mutants suggests that PhoP4 interacts with another, as-yet unidentified, histidine kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.